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alzheimers Alzheimer’s Disease Dataset

Description

Health, lifestyle, and clinical data for 2,149 individuals used for studying Alzheimer’s Disease.
Variables include demographics, cognitive assessments, medical conditions, and symptoms.

Usage

data(alzheimers)

Format

A data frame with 2,149 observations on the following variables:

Age Age in years (60 to 90).

Gender Gender (0 = Male, 1 = Female).

Ethnicity Ethnicity (0 = Caucasian, 1 = African American, 2 = Asian, 3 = Other).

EducationLevel Education level (0 = None, 1 = High School, 2 = Bachelor’s, 3 = Higher).

BMI Body Mass Index (15 to 40).

Smoking Smoking status (0 = No, 1 = Yes).

AlcoholConsumption Weekly alcohol consumption in units (0 to 20).

PhysicalActivity Weekly physical activity in hours (0 to 10).

DietQuality Diet quality score (0 to 10).

SleepQuality Sleep quality score (4 to 10).

FamilyHistoryAlzheimers Family history of Alzheimer’s (0 = No, 1 = Yes).

CardiovascularDisease Cardiovascular disease (0 = No, 1 = Yes).
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Diabetes Diabetes (0 = No, 1 = Yes).

Depression Depression (0 = No, 1 = Yes).

HeadInjury History of head injury (0 = No, 1 = Yes).

Hypertension Hypertension (0 = No, 1 = Yes).

SystolicBP Systolic blood pressure (90 to 180 mmHg).

DiastolicBP Diastolic blood pressure (60 to 120 mmHg).

CholesterolTotal Total cholesterol (150 to 300 mg/dL).

CholesterolLDL LDL cholesterol (50 to 200 mg/dL).

CholesterolHDL HDL cholesterol (20 to 100 mg/dL).

CholesterolTriglycerides Triglycerides (50 to 400 mg/dL).

MMSE Mini-Mental State Examination score (0 to 30). Lower is worse.

FunctionalAssessment Functional score (0 to 10). Lower is worse.

MemoryComplaints Memory complaints (0 = No, 1 = Yes).

BehavioralProblems Behavioral problems (0 = No, 1 = Yes).

ADL Activities of Daily Living score (0 to 10). Lower is worse.

Confusion Presence of confusion (0 = No, 1 = Yes).

Disorientation Presence of disorientation (0 = No, 1 = Yes).

PersonalityChanges Presence of personality changes (0 = No, 1 = Yes).

DifficultyCompletingTasks Difficulty completing tasks (0 = No, 1 = Yes).

Forgetfulness Forgetfulness (0 = No, 1 = Yes).

Diagnosis Alzheimer’s diagnosis (No, Yes).

Details

This dataset is suitable for modeling Alzheimer’s risk, performing exploratory analysis, and evaluat-
ing statistical and machine learning algorithms. All individuals are uniquely identified and evaluated
on a standardized set of clinical and behavioral measures.

Source

Rabie El Kharoua (2024). Alzheimer’s Disease Dataset. Available from Kaggle at https://www.
kaggle.com/datasets/rabieelkharoua/alzheimers-disease-dataset

Examples

## load the data
data(alzheimers, package = "varPro")
o <- varpro(Diagnosis~.,alzheimers)
imp <- importance(o)
print(imp)

https://www.kaggle.com/datasets/rabieelkharoua/alzheimers-disease-dataset
https://www.kaggle.com/datasets/rabieelkharoua/alzheimers-disease-dataset
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cv.varpro Cross-Validated Cutoff Value for Variable Priority (VarPro)

Description

Selects Cutoff Value for Variable Priority (VarPro).

Usage

cv.varpro(f, data, nvar = 30, ntree = 150,
local.std = TRUE, zcut = seq(0.1, 2, length = 50), nblocks = 10,
split.weight = TRUE, split.weight.method = NULL, sparse = TRUE,
nodesize = NULL, max.rules.tree = 150, max.tree = min(150, ntree),
verbose = FALSE, seed = NULL, fast = FALSE, crps = FALSE, ...)

Arguments

f Model formula specifying the outcome and predictors.

data Training data set (data frame).

nvar Maximum number of variables to return.

ntree Number of trees to grow.

local.std Use locally standardized importance values?

zcut Grid of positive cutoff values used for selecting top variables.

nblocks Number of blocks (folds) for cross-validation.

split.weight Use guided tree-splitting? Variables are selected for splitting with probability
proportional to split-weights, obtained by default from a preliminary lasso+tree
step.

split.weight.method

Character string or vector specifying how split-weights are generated. Defaults
to lasso+tree.

sparse Use sparse split-weights?

nodesize Minimum terminal node size. If not specified, an internal function sets the value
based on sample size and data dimension.

max.rules.tree Maximum number of rules per tree.

max.tree Maximum number of trees used for rule extraction.

verbose Print verbose output?

seed Seed for reproducibility.

fast Use rfsrc.fast in place of rfsrc? May improve speed at the cost of accuracy.

crps Use CRPS (continuous ranked probability score) instead of Harrell’s C-index
for evaluating survival performance? Applies only to survival families.

... Additional arguments passed to varpro.
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Details

Applies VarPro and then selects from a grid of cutoff values the cutoff value for identifying variables
that minimizes out-of-sample performance (error rate) of a random forest where the forest is fit to
the top variables identified by the given cutoff value.

Additionally, a "conservative" and "liberal" list of variables are returned using a one standard devi-
ation rule. The conservative list comprises variables using the largest cutoff with error rate within
one standard deviation from the optimal cutoff error rate, whereas the liberal list uses the smallest
cutoff value with error rate within one standard deviation of the optimal cutoff error rate.

For class imbalanced settings (two class problems where relative frequency of labels is skewed
towards one class) the code automatically switches to random forest quantile classification (RFQ;
see O’Brien and Ishwaran, 2019) under the gmean (geometric mean) performance metric.

Value

Output containing importance values for the optimized cutoff value. A conservative and liberal list
of variables is also returned.

Note that importance values are returned in terms of the original features and not their hot-encodings.
For importance in terms of hot-encodings, use the built-in wrapper get.vimp (see example below).

Author(s)

Min Lu and Hemant Ishwaran

References

Lu, M. and Ishwaran, H. (2024). Model-independent variable selection via the rule-based variable
priority. arXiv e-prints, pp.arXiv-2409.

O’Brien R. and Ishwaran H. (2019). A random forests quantile classifier for class imbalanced data.
Pattern Recognition, 90, 232-249.

See Also

importance.varpro uvarpro varpro

Examples

## ------------------------------------------------------------
## van de Vijver microarray breast cancer survival data
## high dimensional example
## ------------------------------------------------------------

data(vdv, package = "randomForestSRC")
o <- cv.varpro(Surv(Time, Censoring) ~ ., vdv)
print(o)

## ------------------------------------------------------------
## boston housing
## ------------------------------------------------------------
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data(BostonHousing, package = "mlbench")
print(cv.varpro(medv~., BostonHousing))

## ------------------------------------------------------------
## boston housing - original/hot-encoded vimp
## ------------------------------------------------------------

## load the data
data(BostonHousing, package = "mlbench")

## convert some of the features to factors
Boston <- BostonHousing
Boston$zn <- factor(Boston$zn)
Boston$chas <- factor(Boston$chas)
Boston$lstat <- factor(round(0.2 * Boston$lstat))
Boston$nox <- factor(round(20 * Boston$nox))
Boston$rm <- factor(round(Boston$rm))

## make cv call
o <-cv.varpro(medv~., Boston)
print(o)

## importance original variables (default)
print(get.orgvimp(o, pretty = FALSE))

## importance for hot-encoded variables
print(get.vimp(o, pretty = FALSE))

## ------------------------------------------------------------
## multivariate regression example: boston housing
## vimp is collapsed across the outcomes
## ------------------------------------------------------------

data(BostonHousing, package = "mlbench")
print(cv.varpro(cbind(lstat, nox) ~., BostonHousing))

## ------------------------------------------------------------
## iris
## ------------------------------------------------------------

print(cv.varpro(Species~., iris))

## ------------------------------------------------------------
## friedman 1
## ------------------------------------------------------------

print(cv.varpro(y~., data.frame(mlbench::mlbench.friedman1(1000))))

##----------------------------------------------------------------
## class imbalanced problem
##
## - simulation example using the caret R-package
## - creates imbalanced data by randomly sampling the class 1 values
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##
##----------------------------------------------------------------

if (library("caret", logical.return = TRUE)) {

## experimental settings
n <- 5000
q <- 20
ir <- 6
f <- as.formula(Class ~ .)

## simulate the data, create minority class data
d <- twoClassSim(n, linearVars = 15, noiseVars = q)
d$Class <- factor(as.numeric(d$Class) - 1)
idx.0 <- which(d$Class == 0)
idx.1 <- sample(which(d$Class == 1), sum(d$Class == 1) / ir , replace = FALSE)
d <- d[c(idx.0,idx.1),, drop = FALSE]
d <- d[sample(1:nrow(d)), ]

## cv.varpro call
print(cv.varpro(f, d))

}

## ------------------------------------------------------------
## pbc survival with rmst vector
## note that vimp is collapsed across the rmst values
## similar to mv-regression
## ------------------------------------------------------------

data(pbc, package = "randomForestSRC")
print(cv.varpro(Surv(days, status)~., pbc, rmst = c(500, 1000)))

## ------------------------------------------------------------
## peak VO2 with cutoff selected using fast option
## (a) C-index (default) (b) CRPS performance metric
## ------------------------------------------------------------

data(peakVO2, package = "randomForestSRC")
f <- as.formula(Surv(ttodead, died)~.)

## Harrel's C-index (default)
print(cv.varpro(f, peakVO2, ntree = 100, fast = TRUE))

## Harrel's C-index with smaller bootstrap
print(cv.varpro(f, peakVO2, ntree = 100, fast = TRUE, sampsize = 100))

## CRPS with smaller bootstrap
print(cv.varpro(f, peakVO2, crps = TRUE, ntree = 100, fast = TRUE, sampsize = 100))

## ------------------------------------------------------------
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## largish data set: illustrates various options to speed up calculations
## ------------------------------------------------------------

## roughly impute the data
data(housing, package = "randomForestSRC")
housing2 <- roughfix(housing)

## use bigger nodesize
print(cv.varpro(SalePrice~., housing2, fast = TRUE, ntree = 50, nodesize = 150))

## use smaller bootstrap
print(cv.varpro(SalePrice~., housing2, fast = TRUE, ntree = 50, nodesize = 150, sampsize = 250))

gliomas Diffuse Adult Glioma

Description

Subset of the data used in Ceccarelli et al. (2016) for molecular profiling of adult diffuse gliomas.
As part of the analysis, the authors developed a supervised analysis using DNA methylation data.
Their original dataset was collected from a core set of 25,978 CpG probes which was reduced to
eliminate sites that were methylated. This reduced set of 1206 probes from 880 tissues makes up
part of the features of this data. Also included are clinical data and other molecular data collected
for the samples. The outcome is a supervised class label developed in the study with labels: Classic-
like, Codel, G-CIMP-high, G-CIMP-low, LGm6-GBM, Mesenchymal-like and PA-like.

References

Ceccarelli, M., Barthel, F.P., Malta, T.M., Sabedot, T.S., Salama, S.R., Murray, B.A., Morozova, O.,
Newton, Y., Radenbaugh, A., Pagnotta, S.M. et al. (2016). Molecular profiling reveals biologically
discrete subsets and pathways of progression in diffuse glioma. Cell, 164, 550-563.

Examples

data(glioma, package = "varPro")
o <- varpro(y~., glioma, nodesize=2, max.tree=250)
imp <- importance(o)
print(head(imp$unconditional))
print(imp$conditional.z)
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importance.varpro Calculate VarPro Importance

Description

Calculates variable importance using results from previous varpro call.

Usage

## S3 method for class 'varpro'
importance(o, local.std = TRUE, y.external = NULL,
cutoff = 0.79, trim = 0.1, plot.it = FALSE, conf = TRUE, sort = TRUE,
ylab = if (conf) "Importance" else "Standardized Importance",
max.rules.tree, max.tree,
...)

Arguments

o varpro object returned from a previous call to varpro.

local.std Logical. If TRUE, uses locally standardized importance values.

y.external Optional user-supplied response vector. Must match the expected dimension
and outcome family.

cutoff Threshold used to highlight significant variables in the importance plot. Applies
only when plot.it = TRUE.

trim Windsorization trim value used to robustify the mean and standard deviation
calculations.

plot.it Logical. If TRUE, generates a plot of importance values.

conf Logical. If TRUE, displays importance values with standard errors as a boxplot
(providing an informal confidence region). If FALSE, plots standardized impor-
tance values.

sort Logical. If TRUE, sorts results in decreasing order of importance.

ylab Character string specifying the y-axis label.

max.rules.tree Optional. Maximum number of rules per tree. Defaults to the value stored in the
varpro object if unspecified.

max.tree Optional. Maximum number of trees used for rule extraction. Defaults to the
value from the varpro object if unspecified.

... Additional arguments passed to internal methods.

Details

Calculates standardized importance values for identifying and ranking variables. Optionally, graph-
ical output is provided, including confidence-style boxplots.
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Value

Invisibly, table summarizing the results. Contains mean importance ’mean’, the standard deviation
’std’, and standardized importance ’z’.

For classification, conditional ’z’ tables are additionally provided, where the $z$ standardized im-
portance values are conditional on the class label.

See cv.varpro for a data driven cross-validation method for selecting the cutoff value, cutoff.

Author(s)

Min Lu and Hemant Ishwaran

References

Lu, M. and Ishwaran, H., (2024). Model-independent variable selection via the rule-based variable
priority. arXiv e-prints, pp.arXiv-2409.

See Also

cv.varpro varpro

Examples

## ------------------------------------------------------------
## toy example - needed to pass CRAN test
## ------------------------------------------------------------

## mtcars regression
o <- varpro(mpg ~ ., mtcars, ntree = 1)
imp <- importance(o, local.std = FALSE)
print(imp)

## ------------------------------------------------------------
## iris example
## ------------------------------------------------------------

## apply varpro to the iris data
o <- varpro(Species ~ ., iris, max.tree = 5)

## print/plot the results
imp <- importance(o, plot.it = TRUE)
print(imp)

## ------------------------------------------------------------
## boston housing: regression
## ------------------------------------------------------------

data(BostonHousing, package = "mlbench")
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## call varpro
o <- varpro(medv~., BostonHousing)

## extract importance values
imp <- importance(o)
print(imp)

## plot the results
imp <- importance(o, plot.it = TRUE)
print(imp)

## ------------------------------------------------------------
## illustrates y-external: regression example
## ------------------------------------------------------------

## friedman1 - standard application of varpro
d <- data.frame(mlbench::mlbench.friedman1(250),noise=matrix(runif(250*10,-1,1),250))
o <- varpro(y~.,d)
print(importance(o))

## importance using external rf predictor
print(importance(o,y.external=randomForestSRC::rfsrc(y~.,d)$predicted.oob))

## importance using external lm predictor
print(importance(o,y.external=lm(y~.,d)$fitted))

## importance using external randomized predictor
print(importance(o,y.external=sample(o$y)))

## ------------------------------------------------------------
## illustrates y-external: classification example
## ------------------------------------------------------------

## iris - standard application of varpro
o <- varpro(Species~.,iris)
print(importance(o))

## importance using external rf predictor
print(importance(o,y.external=randomForestSRC::rfsrc(Species~.,iris)$class.oob))

## importance using external randomized predictor
print(importance(o,y.external=sample(o$y)))

## ------------------------------------------------------------
## illustrates y-external: survival
## ------------------------------------------------------------
data(pbc, package = "randomForestSRC")
o <- varpro(Surv(days, status)~., pbc)
print(importance(o))

## importance using external rsf predictor
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print(importance(o,y.external=randomForestSRC::rfsrc(Surv(days, status)~., pbc)$predicted.oob))

## importance using external randomized predictor
print(importance(o,y.external=sample(o$y)))

isopro Identify Anomalous Data

Description

Use isolation forests to identify rare/anomalous data.

Usage

isopro(object,
method = c("unsupv", "rnd", "auto"),
sampsize = function(x){min(2^6, .632 * x)},
ntree = 500, nodesize = 1,
formula = NULL, data = NULL, ...)

Arguments

object varpro object returned from a previous call.

method Isolation forest method. Options are "unsupv" (unsupervised analysis, default),
"rnd" (pure random splitting), and "auto" (auto-encoder, a type of multivariate
forest).

sampsize Function or numeric value specifying the sample size used for constructing each
tree. Sampling is without replacement.

ntree Number of trees to grow.

nodesize Minimum terminal node size.

formula Formula used for supervised isolation forest. Ignored if object is provided.

data Data frame used to fit the isolation forest. Ignored if object is provided.

... Additional arguments passed to rfsrc.

Details

Isolation Forest (Liu et al., 2008) is a random forest-based method for detecting anomalous obser-
vations. In its original form, trees are constructed using pure random splits, with each tree built
from a small subsample of the data, typically much smaller than the standard 0.632 fraction used
in random forests. The idea is that anomalous or rare observations are more likely to be isolated
early, requiring fewer splits to reach terminal nodes. Thus, observations with relatively small depth
values (i.e., shallow nodes) are considered anomalies.

There are several ways to apply the method:
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• The default approach is to supply a formula and data to build a supervised isolation forest. If
only data is provided (i.e., no response), an unsupervised analysis is performed. In this case,
the method option is used to specify the type of isolation forest (e.g., "unsupv", "rnd", or
"auto").

• If both a formula and data are provided, a supervised model is fit. In this case, method is
ignored. While less conventional, this approach may be useful in certain applications.

• Alternatively, a varpro object may be supplied, but other configurations are also supported. In
this setting, isolation forest is applied to the reduced feature matrix extracted from theobject.
This is similar to using the data option alone but with the advantage of prior dimension
reduction.

Users are encouraged to experiment with the choice of method, as the original isolation forest
("rnd") performs well in many scenarios but can be improved upon in others. For example, in
some cases, "unsupv" or "auto" may yield better detection performance.

In terms of computational cost, "rnd" is the fastest, followed by "unsupv". The slowest is "auto",
which is best suited for low-dimensional settings.

Value

Trained isolation forest and anomaly scores.

Author(s)

Min Lu and Hemant Ishwaran

References

Liu, Fei Tony, Kai Ming Ting, and Zhi-Hua Zhou. (2008). Isolation forest. 2008 Eighth IEEE
International Conference on Data Mining. IEEE.

Ishwaran H. (2025). Multivariate Statistics: Classical Foundations and Modern Machine Learning,
CRC (Chapman and Hall), in press.

See Also

predict.isopro uvarpro varpro

Examples

## ------------------------------------------------------------
##
## satellite data: convert some of the classes to "outliers"
## unsupervised isopro analysis
##
## ------------------------------------------------------------

## load data, make three of the classes into outliers
data(Satellite, package = "mlbench")
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is.outlier <- is.element(Satellite$classes,
c("damp grey soil", "cotton crop", "vegetation stubble"))

## remove class labels, make unsupervised data
x <- Satellite[, names(Satellite)[names(Satellite) != "classes"]]

## isopro calls
i.rnd <- isopro(data=x, method = "rnd", sampsize=32)
i.uns <- isopro(data=x, method = "unsupv", sampsize=32)
i.aut <- isopro(data=x, method = "auto", sampsize=32)

## AUC and precision recall (computed using true class label information)
perf <- cbind(get.iso.performance(is.outlier,i.rnd$howbad),

get.iso.performance(is.outlier,i.uns$howbad),
get.iso.performance(is.outlier,i.aut$howbad))

colnames(perf) <- c("rnd", "unsupv", "auto")
print(perf)

## ------------------------------------------------------------
##
## boston housing analysis
## isopro analysis using a previous VarPro (supervised) object
##
## ------------------------------------------------------------

data(BostonHousing, package = "mlbench")

## call varpro first and then isopro
o <- varpro(medv~., BostonHousing)
o.iso <- isopro(o)

## identify data with extreme percentiles
print(BostonHousing[o.iso$howbad <= quantile(o.iso$howbad, .01),])

## ------------------------------------------------------------
##
## boston housing analysis
## supervised isopro analysis - direct call using formula/data
##
## ------------------------------------------------------------

data(BostonHousing, package = "mlbench")

## direct approach uses formula and data options
o.iso <- isopro(formula=medv~., data=BostonHousing)

## identify data with extreme percentiles
print(BostonHousing[o.iso$howbad <= quantile(o.iso$howbad, .01),])

## ------------------------------------------------------------
##
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## monte carlo experiment to study different methods
## unsupervised isopro analysis
##
## ------------------------------------------------------------

## monte carlo parameters
nrep <- 25
n <- 1000

## simulation function
twodimsim <- function(n=1000) {

cluster1 <- data.frame(
x = rnorm(n, -1, .4),
y = rnorm(n, -1, .2)

)
cluster2 <- data.frame(

x = rnorm(n, +1, .2),
y = rnorm(n, +1, .4)

)
outlier <- data.frame(

x = -1,
y = 1

)
x <- data.frame(rbind(cluster1, cluster2, outlier))
is.outlier <- c(rep(FALSE, 2 * n), TRUE)
list(x=x, is.outlier=is.outlier)

}

## monte carlo loop
hbad <- do.call(rbind, lapply(1:nrep, function(b) {

cat("iteration:", b, "\n")
## draw the data
simO <- twodimsim(n)
x <- simO$x
is.outlier <- simO$is.outlier
## iso pro calls
i.rnd <- isopro(data=x, method = "rnd")
i.uns <- isopro(data=x, method = "unsupv")
i.aut <- isopro(data=x, method = "auto")
## save results
c(tail(i.rnd$howbad,1),

tail(i.uns$howbad,1),
tail(i.aut$howbad,1))

}))

## compare performance
colnames(hbad) <- c("rnd", "unsupv", "auto")
print(summary(hbad))
boxplot(hbad,col="blue",ylab="outlier percentile value")
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ivarpro Individual Variable Priority (iVarPro): Case-Specific Variable Impor-
tance

Description

Individual Variable Priority (iVarPro) computes case-specific (individual-level) variable importance
scores. For each observation in the data and for each predictor identified by the VarPro analysis,
iVarPro returns a local gradient-based priority measure that quantifies how sensitive that case’s
prediction is to changes in that variable.

Usage

ivarpro(object,
adaptive = TRUE,
cut = NULL,
cut.max = 1,
ncut = 51,
nmin = 20, nmax = 150,
y.external = NULL,
noise.na = TRUE,
max.rules.tree = NULL,
max.tree = NULL,
use.loo = TRUE,
use.abs = FALSE,
path.store.membership = TRUE,
keep.data = TRUE)

Arguments

object varpro object from a previous call to varpro, or a rfsrc object.

adaptive Logical. If FALSE and cut is not supplied, the cut grid is constructed as seq(0,
cut.max, length.out = ncut). If TRUE (default) and cut is not supplied, a
data-adaptive upper bound for the neighborhood scale is computed from the
sample size using a simple bandwidth-style rule-of-thumb, and cut is con-
structed as a sequence from 0 to this data-adaptive maximum (subject to cut.max).
This provides a convenient way to automatically sharpen the local neighborhood
for case-specific gradients when the sample size is moderate to large.

cut Optional user-supplied sequence of λ values used to relax the constraint region
in the local linear regression model. For continuous release variables, each value
in cut is calibrated so that cut = 1 corresponds to one standard deviation of the
release coordinate. If cut is supplied, it is used as-is and the arguments cut.max,
ncut, and adaptive are ignored. For binary or one-hot encoded release vari-
ables, the full released region is used and cut does not control neighborhood
size.
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cut.max Maximum value of the λ grid used to define the local neighborhood for contin-
uous release variables when cut is not supplied. By default, cut is constructed
as seq(0, cut.max, length.out = ncut) (or up to a data-adaptive value if
adaptive = TRUE). Smaller values of cut.max yield more local, sharper case-
specific gradients, while larger values yield smoother, more global behavior.

ncut Length of the cut grid when cut is not supplied. The grid is constructed as
seq(0, cut.max, length.out = ncut) (or up to an adaptively chosen maxi-
mum if adaptive = TRUE).

nmin Minimum number of observations required for fitting a local linear model.

nmax Maximum number of observations allowed for fitting a local linear model. In-
ternally, nmax is capped at 10% of the sample size.

y.external Optional user-supplied response vector or matrix to use as the dependent vari-
able in the local linear regression. Must have the same number of rows as the
feature matrix and match the dimension and type expected for the outcome fam-
ily.

noise.na Logical. If TRUE (default), gradients for noisy or non-signal variables are set to
NA; if FALSE, they are set to zero.

max.rules.tree Maximum number of rules per tree. If unspecified, the value from the varpro
object is used, while for rfsrc objects, a default value is used.

max.tree Maximum number of trees used to extract rules. If unspecified, the value from
the varpro object is used, while for rfsrc objects, a default value is used.

use.loo Logical. If TRUE (default), leave-one-out cross-validation is used to select the
best neighborhood size (i.e., the best value in cut) for each rule and release
variable. If FALSE, the neighborhood is chosen to use the largest available sam-
ple that satisfies nmin and nmax.

use.abs Use the absolute gradient for individual importance? Default is FALSE which
uses the actual gradient.

path.store.membership

Store the rule membership indices (OOB case IDs) in the returned object for
later ladder/band calculations? Setting FALSE can substantially reduce memory
usage when the number of rules is large, but disables ladder-based bands in
partial.ivarpro() and prevents ivarpro_band() from being used. Default
is TRUE.

keep.data Save the x and y data (default is TRUE)? Used for downstream plots.

Details

Understanding individual-level (case-specific) variable importance is important in applications where
decisions are made at the level of a single person, unit, or record. A predictor may have only a mod-
est average effect, yet be highly influential for certain cases, or the direction of its effect may differ
across individuals.

The VarPro framework summarizes population-level importance by defining feature-space regions
using rule-based splitting and computing importance using only observed data. iVarPro (Lu and
Ishwaran, 2025) extends this idea to the individual level by quantifying how sensitive each case’s
prediction is to small changes in a predictor identified by the VarPro rule set.
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For each VarPro rule, iVarPro considers the corresponding rule-defined region and then releases the
rule along the rule’s release coordinate. Intuitively, releasing a region means keeping the other rule
constraints in place while allowing additional variation in the released variable, which provides the
information needed to estimate a local directional effect. A simple local linear regression is then
fit on this released region, and the resulting slope is used as a local, gradient-based priority score.
Case-specific scores are obtained by aggregating the relevant rule-level gradients over the rules that
apply to each case.

Neighborhood size and cut.max. For continuous release variables, the size of the local neighbor-
hood used for slope estimation is controlled by cut (constructed from cut.max and ncut when not
supplied). Smaller neighborhoods produce more local behavior and can better reflect sharp changes,
while larger neighborhoods produce smoother, more global behavior. When use.loo = TRUE, the
neighborhood size is chosen in a data-driven way using a leave-one-out criterion; when use.loo
= FALSE, the choice is based on meeting the requested sample-size bounds nmin and nmax. When
adaptive = TRUE and cut is not supplied, an additional sample-size based rule is used to limit the
maximum neighborhood scale (subject to cut.max).

For binary or one-hot encoded release variables, iVarPro interprets the local effect as a scaled finite
difference between the two levels (0 and 1), conditional on the other rule constraints; in this case
cut does not control the neighborhood along the binary coordinate.

Cut.max ladder (neighborhood sensitivity). Because the choice of neighborhood scale can affect
the estimated local gradients, iVarPro also records a ladder of rule-level gradient estimates across
the candidate neighborhood sizes defined by the cut grid. These ladder values can be summa-
rized (e.g., ranges or quantiles) and used to visualize how sensitive case-specific gradients are to
the neighborhood choice, without repeatedly refitting iVarPro for many different cut.max values.
Ladder-based case summaries require rule membership information; set path.store.membership
= TRUE to enable ladder bands and related summaries, or leave it FALSE to reduce memory usage
when the number of rules is very large. See examples below.

Settings that are currently handled. The flexibility of this framework makes it suitable for quanti-
fying case-specific variable importance in regression, classification, and survival settings. Currently,
multivariate forests are not handled.

Value

For univariate outcomes (and two-class classification treated as a single score), a numeric data.frame
of dimension n × p containing case-specific (individual-level) variable priority values, where n is
the number of observations and p is the number of predictors in object$xvar.names.

• Each row corresponds to a case (observation) in the original data.

• Each column corresponds to a predictor variable in object$xvar.names.

The entry in row i and column j is the iVarPro importance score for variable j for case i, measuring
the local sensitivity of that case’s prediction to changes in that variable. Predictors that are never
used as release variables in the VarPro rule set may appear with constant NA values (when noise.na
= TRUE) or constant zero values (when noise.na = FALSE).

Ladder/path information. The returned object carries an attribute "ivarpro.path" containing
additional information used for ladder-based summaries and plotting. In particular:

cut The full cut grid used to evaluate candidate local neighborhoods.
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cut.ladder The interior values of cut (excluding the endpoints) used for the cut.max ladder path.

rule.imp.ladder A numeric matrix of dimension R×L storing rule-level gradients selected under
each ladder truncation, where R is the number of retained rules and L = length(cut.ladder).

rule.variable Integer vector of length R giving the release-variable index for each retained rule.

oobMembership Optional list (length R) giving the OOB membership indices for each retained
rule; included only when path.store.membership = TRUE.

Additional tuning flags and rule metadata (e.g., use.loo, adaptive, and tree/branch identifiers)
may also be included for diagnostics.

Author(s)

Min Lu and Hemant Ishwaran

References

Lu, M. and Ishwaran, H. (2025). Individual variable priority: a model-independent local gradient
method for variable importance. Artificial Intelligence Review, 58:407.

See Also

varpro

Examples

## ------------------------------------------------------------
##
## survival example with shap-like plot
##
## ------------------------------------------------------------

data(peakVO2, package = "randomForestSRC")
o <- varpro(Surv(ttodead, died)~., peakVO2, ntree = 50)

## canonical standard analysis
imp1 <- ivarpro(o)
shap.ivarpro(imp1)

## non-adaptive analysis
imp2 <- ivarpro(o, adaptive = FALSE)
shap.ivarpro(imp2)

## non-adaptive using a small cut.max
imp3 <- ivarpro(o, cut.max = 0.5, adaptive = FALSE)
shap.ivarpro(imp3)

## ------------------------------------------------------------
##
## synthetic regression example with partial plot
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##
## ------------------------------------------------------------

## true regression function
true.function <- function(which.simulation) {

if (which.simulation == 1) {
function(x1, x2) { 1 * (x2 <= .25) +

15 * x2 * (x1 <= .5 & x2 > .25) +
(7 * x1 + 7 * x2) * (x1 > .5 & x2 > .25) }

}
else if (which.simulation == 2) {

function(x1, x2) { r <- x1^2 + x2^2; 5 * r * (r <= .5) }
}
else {

function(x1, x2) { 6 * x1 * x2 }
}

}

## simulation function
simfunction <- function(n = 1000, true.function, d = 20, sd = 1) {

d <- max(2, d)
X <- matrix(runif(n * d, 0, 1), ncol = d)
dta <- data.frame(list(

x = X,
y = true.function(X[, 1], X[, 2]) + rnorm(n, sd = sd)

))
colnames(dta)[1:d] <- paste("x", 1:d, sep = "")
dta

}

## simulate the data
which.simulation <- 1
df <- simfunction(n = 500, true.function(which.simulation))

## varpro analysis
vp <- varpro(y ~ ., df)

## ivarpro analysis
imp <- ivarpro(vp)

## partial plot of x2
partial.ivarpro(imp, var="x2")

## partial plot of x2 without ladder band
partial.ivarpro(imp, var="x2", ladder=FALSE)

## optional: use only a subset of ladder cuts
partial.ivarpro(imp, var="x2", ladder=TRUE, ladder.cuts=1:8)

## partial plot with color/size using x1 (color) and y (size)
partial.ivarpro(imp, var="x2", col.var="x1", size.var="y")

## ------------------------------------------------------------



outpro 21

##
## survival example with partial plot
##
## ------------------------------------------------------------

data(peakVO2, package = "randomForestSRC")

## varpro/importance call
i.pv <- ivarpro(varpro(Surv(ttodead, died)~., peakVO2))

## partial plot of peak vo2
## color displays interval (a measure of exercise time)
## size displays "y" which is predicted mortality in survival
partial.ivarpro(i.pv, var="peak.vo2", col.var="interval", size.var="y")

## same but using beta blockers for color
partial.ivarpro(i.pv, var="peak.vo2", col.var="betablok", size.var="y")

outpro Model and subsapce aware out-of-distribution (OOD) scoring with
outPro

Description

outpro computes an out-of-distribution (OOD) score for new inputs using a fitted model, integrat-
ing variable prioritization and local neighborhoods derived from the model. The procedure is model
aware and subspace aware: it scores departures in the coordinates that the model has learned to rely
on, rather than relying on a global distance in the full feature space. Applicable across all outcome
types.

Usage

outpro(object,
newdata,
neighbor = NULL,
distancef = "prod",
reduce = TRUE,
cutoff = NULL,
max.rules.tree = 150,
max.tree = 150)

outpro.null(object,
nulldata = NULL,
neighbor = NULL,
distancef = "prod",
reduce = TRUE,
cutoff = .79,
max.rules.tree = 150,
max.tree = 150)
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Arguments

object A fitted varpro object or an rfsrc object with classes c("rfsrc","grow").

newdata New data to score. If omitted, the training design matrix is used. For varpro
objects, encodings are aligned to training with get.hotencode.test.

neighbor Number of training neighbors per case, as determined by the model structure. If
NULL, a default of min(n/10, 5000) is used where n is the number of training
rows.

distancef Distance function for aggregation. One of "prod", "euclidean", "mahalanobis",
"manhattan", "minkowski", "kernel". The default is "prod".

reduce Controls variable selection. If TRUE with a varpro object, uses model based pri-
oritization with threshold cutoff. A character vector selects variables by name.
A named numeric vector supplies variable weights. Otherwise all predictors are
used with unit weights.

cutoff Threshold used with varpro variable importance z. If NULL, a default based on
the number of predictors is used: .79 when the number of predictors is not large,
else 0.

max.rules.tree Maximum number of rules per tree for neighbor extraction.

max.tree Maximum number of trees to use for neighbor extraction.

nulldata For outpro.null, optional data representing an in distribution reference. If
omitted, the training design matrix is used.

Details

Out-of-distribution (OOD) detection is essential for determining when a supervised model encoun-
ters inputs that differ in ways that matter for prediction. The approach here embeds variable pri-
oritization directly in the detection step, constructing localized, task relevant neighborhoods from
the fitted model and aggregating coordinate wise deviations within the selected subspace to obtain
a distance value for an input.

For a varpro object, variable prioritization is obtained from the model and controlled by cutoff.
For an rfsrc object, all predictors are used unless a reduction is supplied. Distances are com-
puted after standardizing the selected variables with training means and scales. Variables with zero
standard deviation in the training data are removed automatically before scoring.

The multiplicative "prod" metric uses a small ϵ to avoid zero multiplicands. Since differences are
measured on a standardized scale, ϵ is set automatically by default as a small fraction of the median
absolute coordinate difference across variables and neighbors; users can keep the default or pass a
custom value via out.distance if calling it directly.

The Mahalanobis option uses absolute differences by design and the covariance of standardized
training features. A small ridge is added to the covariance for numerical stability.

Value

outpro returns a list with components:

• distance: numeric vector of length nrow(newdata) with one score per case.

• distance.object: ingredients used for distance computation, including
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– score: neighbor frames returned by varpro.strength.

– neighbor: neighbor count per case.

– xvar.names: selected variable names after zero sd removal.

– xvar.wt: variable weights used after normalization.

– dist.xvar: list of absolute coordinate difference matrices (neighbors by cases) in stan-
dardized units.

– xorg.scale, xnew.scale: standardized training and test matrices for the selected vari-
ables.

– means, sds: training means and scales for the selected variables.

– dropped.zero.sd.variables: variables removed due to zero standard deviation in train-
ing.

• distance.args: list of metric arguments actually used, including distancef, weights.used,
normalize.weights, p, and epsilon.used.

• score: the neighbor information returned by varpro.strength.

• neighbor: neighbor setting used.

• cutoff: cutoff used for variable prioritization.

• oob.bits: indicator of whether scoring was done on training rows or new data.

• selected.variables: the variables used in scoring after all filters.

• selected.weights: the normalized squared weights for the selected variables.

• means, sds: duplicates for convenience.

• call: the matched call.

outpro.null returns the same list with two additional components:

• cdf: the empirical distribution function of distance.

• quantile: the empirical cumulative probability for each scored case.

Background

The method follows a model centered view of out-of-distribution (OOD) detection that is both
model aware and subspace aware. Variable prioritization is embedded directly in the detection pro-
cess to focus on coordinates that matter for prediction and to discount nuisance directions. Scoring
does not rely on global feature density estimation. The implementation uses a random forest en-
gine whose rule based structure provides localized neighborhoods reflecting the learned predictive
mapping.

See Also

varpro, rfsrc.
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Examples

## ------------------------------------------------

## fit a varPro model
data(BostonHousing, package = "mlbench")
smp <- sample(1:nrow(BostonHousing), size = nrow(BostonHousing) * .75)
train.data <- BostonHousing[smp,]
test.data <- BostonHousing[-smp,]
vp <- varpro(medv ~ ., data = train.data)

## Score new data with default multiplicative metric
op <- outpro(vp, newdata = test.data)
head(op$distance)

## Calibrate a null distribution using training data
op.null <- outpro.null(vp)
head(op.null$quantile)

partialpro Partial Effects for Variable(s)

Description

Obtain the partial effect of x-variables from a VarPro analysis.

Usage

partialpro(object, xvar.names, nvar,
target, learner, newdata, method = c("unsupv", "rnd", "auto"),
verbose = FALSE, ...)

Arguments

object varpro object returned from a previous call to varpro.

xvar.names Names of the x-variables to use.

nvar Number of variables to include. Defaults to all.

target For classification, specifies the class for which the partial effect is computed.
Can be an integer or character label. Defaults to the last class.

learner Optional function specifying a user-defined prediction model. See Details.

newdata Optional data frame containing test features. If not provided, the training data is
used.
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method Isolation forest method used for Unlimited Virtual Twins (UVT). Options are
"unsupv" (default), "rnd" (pure random splitting), and "auto" (autoencoder).
See isopro for details.

verbose Print verbose output?

... Additional hidden options: "cut", "nsmp", "nvirtual", "nmin", "alpha",
"df", "sampsize", "ntree", "nodesize", "mse.tolerance".

Details

Computes partial effects for selected variables based on a VarPro analysis. If a variable was filtered
out during VarPro (e.g., due to noise), its partial effect cannot be computed.

Partial effects are derived using predictions from the forest built during VarPro. These predictions
are restricted using Unlimited Virtual Twins (UVT), which apply an isolation forest criterion to
filter unlikely combinations of partial data. The filtering threshold is governed by the internal cut
parameter. Isolation forests are constructed via isopro.

Interpretation of partial effects depends on the outcome type:

• For regression: effects are on the response scale.

• For survival: effects are either on mortality (default) or RMST (if specified in the original
varpro call).

• For classification: effects are log-odds for the specified target class.

Partial effects are estimated locally using polynomial linear models fit to the predicted values. The
degrees of freedom for the local model are controlled by the df option (default = 2, i.e., quadratic).

By default, predictions use the forest from the VarPro object. Alternatively, users may supply a
custom prediction function via learner. This function should accept a data frame of features and
return:

• A numeric vector for regression or survival outcomes.

• A matrix of class probabilities (one column per class, in original class order) for classification.

• If newdata is missing, the function should return predictions on the original training data.

See the examples for use cases with external learners, including:

1. Random forest (external to VarPro),

2. Gradient tree boosting,

3. Bayesian Additive Regression Trees (BART).

Value

Named list, with entries containing the partial plot information for a variable.

Author(s)

Min Lu and Hemant Ishwaran
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References

Ishwaran H. (2025). Multivariate Statistics: Classical Foundations and Modern Machine Learning,
CRC (Chapman and Hall), in press.

See Also

varpro isopro

Examples

##------------------------------------------------------------------
##
## Boston housing
##
##------------------------------------------------------------------

library(mlbench)
data(BostonHousing)
oldpar <- par(mfrow=c(2,3))
plot((oo.boston<-partialpro(varpro(medv~.,BostonHousing),nvar=6)))
par(oldpar)

##------------------------------------------------------------------
##
## Boston housing using newdata option
##
##
##------------------------------------------------------------------

library(mlbench)
data(BostonHousing)
o <- varpro(medv~.,BostonHousing)
oldpar <- par(mfrow=c(2,3))
plot(partialpro(o,nvar=3))
## same but using newdata (set to first 6 cases of the training data)
plot(partialpro(o,newdata=o$x[1:6,],nvar=3))
par(oldpar)

##------------------------------------------------------------------
##
## Boston housing with externally constructed rf learner
##
##------------------------------------------------------------------

## varpro analysis
library(mlbench)
data(BostonHousing)
o <- varpro(medv~.,BostonHousing)

## default partial pro call
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pro <- partialpro(o, nvar=3)

## partial pro call using built in rf learner
mypro <- partialpro(o, nvar=3, learner=rf.learner(o))

## compare the two
oldpar <- par(mfrow=c(2,3))
plot(pro)
plot(mypro, ylab="external rf learner")
par(oldpar)

##------------------------------------------------------------------
##
## Boston housing: tree gradient boosting learner, bart learner
##
##------------------------------------------------------------------

if (library("gbm", logical.return=TRUE) &&
library("BART", logical.return=TRUE)) {

## varpro analysis
library(parallel)
library(mlbench)
data(BostonHousing)
o <- varpro(medv~.,BostonHousing)

## default partial pro call
pro <- partialpro(o, nvar=3)

## partial pro call using built in gradient boosting learner
mypro <- partialpro(o, nvar=3, learner=gbm.learner(o, n.trees=1000, n.cores=get.mc.cores()))

## partial pro call using built in bart learner
mypro2 <- partialpro(o, nvar=3, learner=bart.learner(o, mc.cores=get.mc.cores()))

## compare the learners
oldpar <- par(mfrow=c(3,3))
plot(pro)
plot(mypro, ylab="external boosting learner")
plot(mypro2, ylab="external bart learner")
par(oldpar)
}

##------------------------------------------------------------------
##
## peak vo2 with 5 year rmst
##
##------------------------------------------------------------------

data(peakVO2, package = "randomForestSRC")
oldpar <- par(mfrow=c(2,3))
plot((oo.peak<-partialpro(varpro(Surv(ttodead,died)~.,peakVO2,rmst=5),nvar=6)))
par(oldpar)
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##------------------------------------------------------------------
##
## veteran data set with celltype as a factor
##
##------------------------------------------------------------------

data(veteran, package = "randomForestSRC")
dta <- veteran
dta$celltype <- factor(dta$celltype)
oldpar <- par(mfrow=c(2,3))
plot((oo.veteran<-partialpro(varpro(Surv(time, status)~., dta), nvar=6)))
par(oldpar)

##------------------------------------------------------------------
##
## iris: classification analysis showing partial effects for all classes
##
##------------------------------------------------------------------

o.iris <- varpro(Species~.,iris)
yl <- paste("log-odds", levels(iris$Species))
oldpar <- par(mfrow=c(3,2))
plot((oo.iris.1 <- partialpro(o.iris, target=1, nvar=2)),ylab=yl[1])
plot((oo.iris.2 <- partialpro(o.iris, target=2, nvar=2)),ylab=yl[2])
plot((oo.iris.3 <- partialpro(o.iris, target=3, nvar=2)),ylab=yl[3])
par(oldpar)

##------------------------------------------------------------------
##
## iowa housing data
##
##------------------------------------------------------------------

## quickly impute the data; log transform the outcome
data(housing, package = "randomForestSRC")
housing <- randomForestSRC::impute(SalePrice~., housing, splitrule="random", nimpute=1)
dta <- data.frame(data.matrix(housing))
dta$y <- log(housing$SalePrice)
dta$SalePrice <- NULL

## partial effects analysis
o.housing <- varpro(y~., dta, nvar=Inf)
oo.housing <- partialpro(o.housing,nvar=15)
oldpar <- par(mfrow=c(3,5))
plot(oo.housing)
par(oldpar)

plot.partialpro Partial Plots for VarPro
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Description

Plot partial effects of x-variable(s) from a VarPro analysis.

Usage

## S3 method for class 'partialpro'
plot(x, xvar.names, nvar,
parametric = FALSE, se = TRUE,
causal = FALSE, subset = NULL, plot.it = TRUE, ...)

Arguments

x partialpro object returned from a previous call to partialpro.

xvar.names Names (or integer indices) of the x-variables to plot. Defaults to all variables.

nvar Number of variables to plot. Defaults to all.

parametric Logical. Set to TRUE only if the partial effect is believed to follow a polynomial
form.

se Display standard errors?

causal Display causal estimator?

subset Optional conditioning factor. Not applicable if parametric = TRUE. May also
be a logical or integer vector to subset the analysis.

plot.it If FALSE, no plot is produced; instead, partial effect values are returned.

... Additional arguments passed to plot.

Details

Generates smoothed partial effect plots for continuous variables. The solid black line represents
the estimated partial effect; dashed red lines show an approximate plus-minus standard error band.
These standard errors are intended as heuristic guides and should be interpreted cautiously.

Partial effects are estimated nonparametrically using locally fitted polynomial models. This is the
default behavior and is recommended when effects are expected to be nonlinear. Use parametric
= TRUE if the underlying effect is believed to follow a global polynomial form.

For binary variables, partial effects are shown as boxplots, with whiskers reflecting variability anal-
ogous to standard error.

The causal estimator, when requested, displays the baseline-subtracted parametric local effect.

Conditioning is supported via the subset option. When supplied as a factor (with length equal to
the original data), the plot is stratified by its levels. Alternatively, subset can be a logical or integer
vector indicating the cases to include in the analysis.

Value

No return value, called for the purpose of generating a plot.

Author(s)

Min Lu and Hemant Ishwaran
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References

Ishwaran H. (2025). Multivariate Statistics: Classical Foundations and Modern Machine Learning,
CRC (Chapman and Hall), in press.

See Also

partialpro

Examples

##------------------------------------------------------------------
##
## Boston housing
##
##------------------------------------------------------------------

library(mlbench)
data(BostonHousing)
o.boston <- varpro(medv~.,BostonHousing)
oo.boston <- partialpro(o.boston, nvar=4, learner=rf.learner(o.boston))

oldpar <- par(mfrow=c(2,4))

## parametric local estimation (default)
plot(oo.boston, ylab="parametric est.")

## non-parametric local estimation
plot(oo.boston, parametric=FALSE, ylab="non-parametric est.")

par(oldpar)

##------------------------------------------------------------------
##
## Boston housing with subsetting
##
##------------------------------------------------------------------

library(mlbench)
data(BostonHousing)
o.boston <- varpro(medv~.,BostonHousing)
oo.boston <- partialpro(o.boston, nvar=3, learner=rf.learner(o.boston))

## subset analysis
price <- BostonHousing$medv
pricef <- factor(price>median(price), labels=c("low priced","high priced"))
oldpar <- par(mfrow=c(1,1))
plot(oo.boston, subset=pricef, nvar=1)
par(oldpar)

##------------------------------------------------------------------
##
## veteran data with subsetting using celltype as a factor
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##
##------------------------------------------------------------------

data(veteran, package = "randomForestSRC")
dta <- veteran
dta$celltype <- factor(dta$celltype)
o.vet <- varpro(Surv(time, status)~., dta)
oo.vet <- partialpro(o.vet, nvar=6, nsmp=Inf, learner=rf.learner(o.vet))

## partial effects, with subsetting
oldpar <- par(mfrow=c(2,3))
plot(oo.vet, subset=dta$celltype)
par(oldpar)

## causal effects, with subsetting
oldpar <- par(mfrow=c(2,3))
plot(oo.vet, subset=dta$celltype, causal=TRUE)
par(oldpar)

predict.isopro Prediction for Isopro for Identifying Anomalous Data

Description

Use isolation forests to identify rare/anomalous values using test data.

Usage

## S3 method for class 'isopro'
predict(object, newdata, quantiles = TRUE, ...)

Arguments

object isopro object returned from a previous call.

newdata Optional test data. If not provided, the training data is used.

quantiles Logical. If TRUE (default), returns quantile values; if FALSE, returns case depth
values.

... Additional arguments passed to internal methods.

Details

Uses a previously constructed isopro object to assess anomalous observations in the test data. By
default, returns quantile values representing the depth of each test observation relative to the original
training data. Smaller values indicate greater outlyingness.

To return raw depth values instead of quantiles, set quantiles = FALSE.
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Value

Anomaly scores for the test data (or training data).

Author(s)

Min Lu and Hemant Ishwaran

References

Liu, Fei Tony, Kai Ming Ting, and Zhi-Hua Zhou. (2008). Isolation forest. 2008 Eighth IEEE
International Conference on Data Mining. IEEE.

Ishwaran H. (2025). Multivariate Statistics: Classical Foundations and Modern Machine Learning,
CRC (Chapman and Hall), in press.

See Also

isopro uvarpro varpro

Examples

## ------------------------------------------------------------
##
## boston housing
## unsupervised isopro analysis
##
## ------------------------------------------------------------

## training
data(BostonHousing, package = "mlbench")
o <- isopro(data=BostonHousing)

## make fake data
fake <- do.call(rbind, lapply(1:nrow(BostonHousing), function(i) {

fakei <- BostonHousing[i,]
fakei$lstat <- quantile(BostonHousing$lstat, .99)
fakei$nox <- quantile(BostonHousing$nox, .99)
fakei

}))

## compare depth values for fake data to training data
depth.fake <- predict(o, fake)
depth.train <- predict(o)
depth.data <- rbind(data.frame(whichdata="fake", depth=depth.fake),

data.frame(whichdata="train", depth=depth.train))
boxplot(depth~whichdata, depth.data, xlab="data", ylab="depth quantiles")

## ------------------------------------------------------------
##
## boston housing
## isopro supervised analysis with different split rules
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##
## ------------------------------------------------------------

data(BostonHousing, package="mlbench")

## supervised isopro analysis using different splitrules
o <- isopro(formula=medv~.,data=BostonHousing)
o.hvwt <- isopro(formula=medv~.,data=BostonHousing,splitrule="mse.hvwt")
o.unwt <- isopro(formula=medv~.,data=BostonHousing,splitrule="mse.unwt")

## make fake data
fake <- do.call(rbind, lapply(1:nrow(BostonHousing), function(i) {

fakei <- BostonHousing[i,]
fakei$lstat <- quantile(BostonHousing$lstat, .99)
fakei$nox <- quantile(BostonHousing$nox, .99)
fakei

}))

## compare depth values for fake data to training data
depth.train <- predict(o)
depth.hvwt.train <- predict(o.hvwt)
depth.unwt.train <- predict(o.unwt)
depth.fake <- predict(o, fake)
depth.hvwt.fake <- predict(o.hvwt, fake)
depth.unwt.fake <- predict(o.unwt, fake)
depth.data <- rbind(data.frame(whichdata="fake", depth=depth.fake),

data.frame(whichdata="fake.hvwt", depth=depth.hvwt.fake),
data.frame(whichdata="fake.unwt", depth=depth.unwt.fake),
data.frame(whichdata="train", depth=depth.train),
data.frame(whichdata="train.hvwt", depth=depth.hvwt.train),
data.frame(whichdata="train.unwt", depth=depth.unwt.train))

boxplot(depth~whichdata, depth.data, xlab="data", ylab="depth quantiles")

predict.uvarpro Prediction on Test Data using Unsupervised VarPro

Description

Obtain predicted values on test data for unsupervised forests.

Usage

## S3 method for class 'uvarpro'
predict(object, newdata, ...)
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Arguments

object Unsupervised VarPro object from a previous call to uvarpro. Only applies if
method = "auto" was used.

newdata Optional test data. If not provided, the training data is used.

... Additional arguments passed to internal methods.

Details

Applies to unsupervised VarPro objects built using the autoencoder (method = "auto"). The object
contains a multivariate random forest used to generate predictions for the test data.

Value

Returns a matrix of predicted values, where each column corresponds to a feature (with one-hot
encoding applied). The result includes the following attributes:

1. mse: Standardized mean squared error averaged across features.

2. mse.all: Standardized mean squared error for each individual feature.

Author(s)

Min Lu and Hemant Ishwaran

See Also

uvarpro

Examples

## ------------------------------------------------------------
##
## boston housing
## obtain predicted values for the training data
##
## ------------------------------------------------------------

## unsupervised varpro on boston housing
data(BostonHousing, package = "mlbench")
o <- uvarpro(data=BostonHousing)

## predicted values for the training features
print(head(predict(o)))

## ------------------------------------------------------------
##
## mtcars
## obtain predicted values for test data
## also illustrates hot-encoding working on test data
##
## ------------------------------------------------------------
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## mtcars with some factors
d <- data.frame(mpg=mtcars$mpg,lapply(mtcars[, c("cyl", "vs", "carb")], as.factor))

## training
o <- uvarpro(d[1:20,])

## predicted values on test data
print(predict(o, d[-(1:20),]))

## predicted values on bad test data with strange factor values
dbad <- d[-(1:20),]
dbad$carb <- as.character(dbad$carb)
dbad$carb <- sample(LETTERS, size = nrow(dbad))
print(predict(o, dbad))

predict.varpro Prediction on Test Data using VarPro

Description

Obtain predicted values on test data for VarPro object.

Usage

## S3 method for class 'varpro'
predict(object, newdata, ...)

Arguments

object VarPro object returned from a previous call to varpro.

newdata Optional test data. If not provided, predictions are computed using the training
data (out-of-bag).

... Additional arguments passed to internal methods.

Details

VarPro uses rules extracted from a random forest built using guided tree-splitting, where variables
are selected based on split-weights computed in a preprocessing step.

Value

Returns predicted values for the input data. If newdata is provided, predictions are made on that
data; otherwise, out-of-bag predictions for the training data are returned.
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Author(s)

Min Lu and Hemant Ishwaran

References

Lu, M. and Ishwaran, H. (2024). Model-independent variable selection via the rule-based variable
priority. arXiv e-prints, pp.arXiv-2409.

See Also

varpro

Examples

## ------------------------------------------------------------
## toy example - needed to pass CRAN test
## ------------------------------------------------------------

## train call
o <- varpro(mpg~., mtcars[1:20,], ntree = 1)

## predict call
print(predict(o, mtcars[-(1:20),]))

## ------------------------------------------------------------
##
## boston housing regression
## obtain predicted values for the training data
##
## ------------------------------------------------------------

## varpro applied to boston housing data
data(BostonHousing, package = "mlbench")
o <- varpro(medv~., BostonHousing)

## predicted values for the training features
print(head(predict(o)))

## ------------------------------------------------------------
##
## iris classification
## obtain predicted values for test data
##
## ------------------------------------------------------------

## varpro applied to iris data
trn <- sample(1:nrow(iris), size = 100, replace = FALSE)
o <- varpro(Species~., iris[trn,])

## predicted values on test data
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print(data.frame(Species=iris[-trn, "Species"], predict(o, iris[-trn,])))

## ------------------------------------------------------------
##
## mtcars regression: illustration of hot-encoding on test data
##
## ------------------------------------------------------------

## mtcars with some factors
d <- data.frame(mpg=mtcars$mpg,lapply(mtcars[, c("cyl", "vs", "carb")], as.factor))

## varpro on training data
o <- varpro(mpg~., d[1:20,])

## predicted values on test data
print(predict(o, d[-(1:20),]))

## predicted values on bad test data with strange factor values
dbad <- d[-(1:20),]
dbad$carb <- as.character(dbad$carb)
dbad$carb <- sample(LETTERS, size = nrow(dbad))
print(predict(o, dbad))

uvarpro Unsupervised Variable Selection using Variable Priority (UVarPro)

Description

Performs unsupervised variable selection by extending the VarPro framework to forests grown with-
out labels. UVarPro identifies features that explain structure in the data through region-release
contrasts, with importance assessed using entropy or lasso-based methods.

Usage

uvarpro(data,
method = c("auto", "unsupv", "rnd"),
ntree = 200, nodesize = NULL,
max.rules.tree = 20, max.tree = 200,
verbose = FALSE, seed = NULL,
...)

Arguments

data Data frame containing the unsupervised data.

method Type of forest used. Options are "auto" (auto-encoder), "unsupv" (unsuper-
vised analysis), and "rnd" (pure random forest).

ntree Number of trees to grow.



38 uvarpro

nodesize Minimum terminal node size. If not specified, an internal function selects an
appropriate value based on sample size and dimension.

max.rules.tree Maximum number of rules per tree.

max.tree Maximum number of trees used to extract rules.

verbose Print verbose output?

seed Seed for reproducibility.

... Additional arguments passed to rfsrc.

Details

UVarPro performs unsupervised variable selection by applying the VarPro framework to random
forests trained on unlabeled data (Zhou et al., 2025). The procedure has two components: (i)
the construction of an unsupervised forest, and (ii) the evaluation of variable importance based on
region-release contrasts, in direct analogy to the supervised setting in VarPro.

The forest construction is controlled by the method argument. By default, method = "auto" fits
a random forest autoencoder, which regresses each selected variable on itself, a specialized form
of multivariate forest modeling. Alternatives include "unsupv", which uses pseudo-responses and
multivariate splits to build an unsupervised forest (Tang and Ishwaran, 2017), and "rnd", which
uses completely random splits. For large datasets, the autoencoder may be slower, while "unsupv"
and "rnd" are often much faster.

Variable importance is assessed using region-release contrasts formed by the forest. By default,
the importance function returns an entropy-based criterion. This measure compares the variability
within each region to the variability across the combined sample, effectively acting like a ratio of
between to within sums of squares. Importance values are averaged across many region-release
rules, providing a rough but fast estimate of how strongly a feature contributes to distinguishing
regions. See examples below.

In addition to this default entropy measure, UVarPro supports custom user-defined entropy functions
to create alternative importance metrics.

A more sophisticated procedure, described in Zhou et al. (2026), reframes each region-release con-
trast as a supervised classification task, with membership in the region serving as the class label.
Variable effects are estimated using lasso-based logistic regression, and coefficients are aggregated
over the collection of region-release tasks. This produces a sparser and often more interpretable
assessment of importance compared to the entropy method. Although more computationally inten-
sive, the lasso-driven approach can provide sharper separation of relevant and irrelevant features.
See examples below for details.

Value

A uvarpro object.

Author(s)

Min Lu and Hemant Ishwaran
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References

Tang F. and Ishwaran H. (2017). Random forest missing data algorithms. Statistical Analysis and
Data Mining, 10:363-377.

Zhou L., Lu M. and Ishwaran H. (2026). Variable priority for unsupervised variable selection.
Pattern Recognition, 172:112727.

See Also

varpro

Examples

## ------------------------------------------------------------
## toy example - needed to pass CRAN test
## ------------------------------------------------------------

## mtcars unsupervised regression
o <- uvarpro(mtcars, ntree = 1)

## ------------------------------------------------------------
## boston housing: default call
## ------------------------------------------------------------

data(BostonHousing, package = "mlbench")

## default call
o <- uvarpro(BostonHousing)
print(importance(o))

## ------------------------------------------------------------
## boston housing: using method="unsupv"
## ------------------------------------------------------------

data(BostonHousing, package = "mlbench")

## unsupervised splitting
o <- uvarpro(BostonHousing, method = "unsupv")
print(importance(o))

## ------------------------------------------------------------
## boston housing: illustrates hot-encoding
## ------------------------------------------------------------

## load the data
data(BostonHousing, package = "mlbench")

## convert some of the features to factors
Boston <- BostonHousing



40 uvarpro

Boston$zn <- factor(Boston$zn)
Boston$chas <- factor(Boston$chas)
Boston$lstat <- factor(round(0.2 * Boston$lstat))
Boston$nox <- factor(round(20 * Boston$nox))
Boston$rm <- factor(round(Boston$rm))

## call unsupervised varpro and print importance
print(importance(o <- uvarpro(Boston)))

## get top variables
get.topvars(o)

## map importance values back to original features
print(get.orgvimp(o))

## same as above ... but for all variables
print(get.orgvimp(o, pretty = FALSE))

## ------------------------------------------------------------
## latent variable simulation
## ------------------------------------------------------------

n <- 1000
w <- rnorm(n)
x <- rnorm(n)
y <- rnorm(n)
z <- rnorm(n)
ei <- matrix(rnorm(n * 20, sd = sqrt(.1)), ncol = 20)
e21 <- rnorm(n, sd = sqrt(.4))
e22 <- rnorm(n, sd = sqrt(.4))
wi <- w + ei[, 1:5]
xi <- x + ei[, 6:10]
yi <- y + ei[, 11:15]
zi <- z + ei[, 16:20]
h1 <- w + x + e21
h2 <- y + z + e22
dta <- data.frame(w=w,wi=wi,x=x,xi=xi,y=y,yi=yi,z=z,zi=zi,h1=h1,h2=h2)

## default call
print(importance(uvarpro(dta)))

## ------------------------------------------------------------
## glass (remove outcome)
## ------------------------------------------------------------

data(Glass, package = "mlbench")

## remove the outcome
Glass$Type <- NULL

## get importance
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o <- uvarpro(Glass)
print(importance(o))

## compare to PCA
(biplot(prcomp(o$x, scale = TRUE)))

## ------------------------------------------------------------
## iowa housing - illustrates lasso importance
## ------------------------------------------------------------

## first we roughly impute the data
data(housing, package = "randomForestSRC")

## to speed up analysis, convert all factors to real values
iowa <- roughfix(housing)
iowa <- data.frame(data.matrix(iowa))

## canonical call
o <- uvarpro(iowa)

## standard importance
print(importance(o))

## lasso importance
beta <- get.beta.entropy(o)
print(beta)
print(sort(colMeans(beta, na.rm=TRUE), decreasing = TRUE))

## s-dependent graph
sdependent(beta)

## lasso importance without pre-filtering
## beta.nof <- get.beta.entropy(o, pre.filter = FALSE)
## print(beta.nof)
## print(sort(colMeans(beta.nof, na.rm=TRUE), decreasing = TRUE))

## lasso importance with second stage sparsity lasso
## beta.sparse <- get.beta.entropy(o, second.stage = TRUE)
## print(beta.sparse)

## ------------------------------------------------------------
## custom importance
## OPTION 1: use hidden entropy option
## ------------------------------------------------------------

my.entropy <- function(xC, xO, ...) {

## xC x feature data from complementary region
## xO x feature data from original region
## ... used to pass aditional options (required)

## custom importance value
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wss <- mean(apply(rbind(xO, xC), 2, sd, na.rm = TRUE))
bss <- (mean(apply(xC, 2, sd, na.rm = TRUE)) +

mean(apply(xO, 2, sd, na.rm = TRUE)))
imp <- 0.5 * bss / wss

## entropy value must contain complementary and original membership
entropy <- list(comp = list(...)$compMembership,

oob = list(...)$oobMembership)

## return importance and in the second slot the entropy list
list(imp = imp, entropy)

o <- uvarpro(BostonHousing, entropy=my.entropy)
print(importance(o))

## ------------------------------------------------------------
## custom importance
## OPTION 2: direct importance without hidden entropy option
## ------------------------------------------------------------

o <- uvarpro(BostonHousing, ntree=3, max.rules.tree=10)

## convert original/release region into two-class problem
## define importance as the lasso beta values

## For faster performance on Unix systems, consider using:
## library(parallel)
## imp <- do.call(rbind, mclapply(seq_along(o$entropy), function(j) { ... }))

imp <- do.call(rbind, lapply(seq_along(o$entropy), function(j) {
rO <- do.call(rbind, lapply(o$entropy[[j]], function(r) {

xC <- o$x[r[[1]],names(o$entropy),drop=FALSE]
xO <- o$x[r[[2]],names(o$entropy),drop=FALSE]
y <- factor(c(rep(0, nrow(xC)), rep(1, nrow(xO))))
x <- rbind(xC, xO)
x <- x[, colnames(x) != names(o$entropy)[j]]
fit <- tryCatch(

suppressWarnings(glmnet::cv.glmnet(as.matrix(x), y, family = "binomial")),
error = function(e) NULL

)
if (!is.null(fit)) {

beta <- setNames(rep(0, length(o$entropy)), names(o$entropy))
bhat <- abs(coef(fit)[-1, 1])
beta[names(bhat)] <- bhat
beta

} else {
NULL

}
}))
if (!is.null(rO)) {

val <- colMeans(rO, na.rm = TRUE)
names(val) <- colnames(rO)
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return(val)
} else {

return(NULL)
}

}) |> setNames(names(o$entropy)))

print(imp)

## ------------------------------------------------------------
## custom importance
## OPTION 3: direct importance using built in lasso beta function
## ------------------------------------------------------------

o <- uvarpro(BostonHousing)
print((get.beta.entropy(o)))

}

varpro Model-Independent Variable Selection via the Rule-based Variable
Priority (VarPro)

Description

Model-Independent Variable Selection via the Rule-based Variable Priority (VarPro) for Regression,
Multivariate Regression, Classification and Survival.

Usage

varpro(f, data, nvar = 30, ntree = 500,
split.weight = TRUE, split.weight.method = NULL, sparse = TRUE,
nodesize = NULL, max.rules.tree = 150, max.tree = min(150, ntree),

parallel = TRUE, cores = get.mc.cores(), verbose = FALSE, seed = NULL, ...)

Arguments

f Formula specifying the model to be fit.

data Data frame containing the training data.

nvar Maximum number of variables to return.

ntree Number of trees to grow.

split.weight Use guided tree-splitting? Candidate variables for splitting are selected with
probability proportional to a split-weight, obtained by default from a preliminary
lasso+tree step.
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split.weight.method

Character string (or vector) specifying method used to generate split-weights.
Defaults to lasso+tree. See Details.

sparse Use sparse split-weights?

nodesize Minimum terminal node size. If not specified, value is set internally based on
sample size and dimension.

max.rules.tree Maximum number of rules per tree.

max.tree Maximum number of trees used to extract rules.

parallel Use parallel execution for lasso folds using doMC.

cores Number of cores for parallel processing. Defaults to parallel::detectCores().

verbose Print verbose output?

seed Seed for reproducibility.

... Additional arguments for advanced use.

Details

Rule-based models, such as decision rules, rule learning, trees, boosted trees, Bayesian additive
regression trees, Bayesian forests, and random forests, are widely used for variable selection. These
nonparametric methods require no model specification and accommodate various outcomes includ-
ing regression, classification, survival, and longitudinal data.

Although permutation variable importance (VIMP) and knockoff methods have been extensively
studied, their effectiveness can be limited in practice. Both approaches rely on the quality of artifi-
cially generated covariates, which may not perform well in complex or high-dimensional settings.

To address these limitations, we introduce a new framework called variable priority (VarPro). In-
stead of generating synthetic covariates, VarPro constructs *release rules* to assess the impact of
each covariate on the response. Neighborhoods of existing data are used for estimation, avoiding
the need for artificial data generation. Like VIMP and knockoffs, VarPro imposes no assumptions
on the conditional distribution of the response.

The VarPro algorithm proceeds as follows: A forest of ntree trees is grown using guided tree-
splitting, where candidate variables for node splitting are selected with probability proportional to
their split-weights. These split-weights are computed in a preprocessing step. A subset of max.tree
trees is randomly selected from the forest, and max.rules.tree branches are sampled from each
selected tree. The resulting rules form the basis of the VarPro importance estimator. The method
supports regression, multivariate regression, multiclass classification, and survival outcomes.

Guided tree-splitting encourages rule construction to favor influential features. Thus, split.weight
should generally remain TRUE, especially for high-dimensional problems. If disabled, it is recom-
mended to increase nodesize to improve estimator precision.

By default, split-weights are computed via a lasso-plus-tree strategy. Specifically, the split-weight
of a variable is defined as the product of the absolute standardized lasso coefficient and the variable’s
split frequency from a forest of shallow trees. If sample size and dimension are both moderate, this
may be replaced by the variable’s absolute permutation importance. Note: variables are one-hot
encoded for use in lasso, and all inputs are converted to numeric values.

To customize split-weight construction, use the split.weight.method argument with one or more
of the following strings: "lasso", "tree", or "vimp". For example, "lasso" uses only lasso
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coefficients; "lasso tree" combines lasso and shallow trees; "lasso vimp" combines lasso with
permutation importance. See examples below.

Variables are ranked by importance, with higher values indicating greater influence. Cross-validation
can be used to determine a cutoff threshold. See cv.varpro for details.

Run time can be reduced by using smaller values of ntree or larger values of nodesize. Additional
runtime tuning options are discussed in the examples.

In class-imbalanced two-class settings, the algorithm automatically switches to random forest quan-
tile classification (RFQ; see O’Brien and Ishwaran, 2019) using the geometric mean (gmean) metric.
This behavior can be overridden via the hidden option use.rfq.

Value

Output containing VarPro estimators used to calculate importance. See importance.varpro. Also
see cv.varpro for automated variable selection.

Author(s)

Min Lu and Hemant Ishwaran

References

Lu, M. and Ishwaran, H. (2024). Model-independent variable selection via the rule-based variable
priority. arXiv e-prints, pp.arXiv-2409.

O’Brien R. and Ishwaran H. (2019). A random forests quantile classifier for class imbalanced data.
Pattern Recognition, 90, 232-249.

See Also

alzheimers cv.varpro glioma importance.varpro partialpro predict.varpro isopro ivarpro
outpro uvarpro

Examples

## ------------------------------------------------------------
## toy example - needed to pass CRAN test
## ------------------------------------------------------------

## mtcars regression
o <- varpro(mpg ~ ., mtcars, ntree = 1)

## ------------------------------------------------------------
## classification example: iris
## ------------------------------------------------------------

## apply varpro to the iris data
o <- varpro(Species ~ ., iris, max.tree = 5)

## call the importance function and print the results
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print(importance(o))

## ------------------------------------------------------------
## regression example: boston housing
## ------------------------------------------------------------

## load the data
data(BostonHousing, package = "mlbench")

## call varpro
o <- varpro(medv~., BostonHousing)

## extract and print importance values
imp <- importance(o)
print(imp)

## another way to extract and print importance values
print(get.vimp(o))
print(get.vimp(o, pretty = FALSE))

## plot importance values
importance(o, plot.it = TRUE)

## ------------------------------------------------------------
## regression example: boston housing illustrating hot-encoding
## ------------------------------------------------------------

## load the data
data(BostonHousing, package = "mlbench")

## convert some of the features to factors
Boston <- BostonHousing
Boston$zn <- factor(Boston$zn)
Boston$chas <- factor(Boston$chas)
Boston$lstat <- factor(round(0.2 * Boston$lstat))
Boston$nox <- factor(round(20 * Boston$nox))
Boston$rm <- factor(round(Boston$rm))

## call varpro and print the importance
print(importance(o <- varpro(medv~., Boston)))

## get top variables
get.topvars(o)

## map importance values back to original features
print(get.orgvimp(o))

## same as above ... but for all variables
print(get.orgvimp(o, pretty = FALSE))

## ------------------------------------------------------------
## regression example: friedman 1
## ------------------------------------------------------------
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o <- varpro(y~., data.frame(mlbench::mlbench.friedman1(1000)))
print(importance(o))

## ------------------------------------------------------------
## example without guided tree-splitting
## ------------------------------------------------------------

o <- varpro(y~., data.frame(mlbench::mlbench.friedman2(1000)),
nodesize = 10, split.weight = FALSE)

print(importance(o))

## ------------------------------------------------------------
## regression example: all noise
## ------------------------------------------------------------

x <- matrix(rnorm(100 * 50), 100, 50)
y <- rnorm(100)
o <- varpro(y~., data.frame(y = y, x = x))
print(importance(o))

## ------------------------------------------------------------
## multivariate regression example: boston housing
## ------------------------------------------------------------

data(BostonHousing, package = "mlbench")

## using rfsrc multivariate formula call
importance(varpro(Multivar(lstat, nox) ~., BostonHousing))

## using cbind multivariate formula call
importance(varpro(cbind(lstat, nox) ~., BostonHousing))

##----------------------------------------------------------------
## class imbalanced problem
##
## - simulation example using the caret R-package
## - creates imbalanced data by randomly sampling the class 1 values
##
##----------------------------------------------------------------

if (library("caret", logical.return = TRUE)) {

## experimental settings
n <- 5000
q <- 20
ir <- 6
f <- as.formula(Class ~ .)

## simulate the data, create minority class data
d <- twoClassSim(n, linearVars = 15, noiseVars = q)
d$Class <- factor(as.numeric(d$Class) - 1)
idx.0 <- which(d$Class == 0)
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idx.1 <- sample(which(d$Class == 1), sum(d$Class == 1) / ir , replace = FALSE)
d <- d[c(idx.0,idx.1),, drop = FALSE]
d <- d[sample(1:nrow(d)), ]

## varpro call
print(importance(varpro(f, d)))

}

## ------------------------------------------------------------
## survival example: pbc
## ------------------------------------------------------------
data(pbc, package = "randomForestSRC")
o <- varpro(Surv(days, status)~., pbc)
print(importance(o))

## ------------------------------------------------------------
## pbc survival with rmst (restricted mean survival time)
## functional of interest is RMST at 500 days
## ------------------------------------------------------------
data(pbc, package = "randomForestSRC")
o <- varpro(Surv(days, status)~., pbc, rmst = 500)
print(importance(o))

## ------------------------------------------------------------
## pbc survival with rmst vector
## variable importance is a list for each rmst value
## ------------------------------------------------------------
data(pbc, package = "randomForestSRC")
o <- varpro(Surv(days, status)~., pbc, rmst = c(500, 1000))
print(importance(o))

## ------------------------------------------------------------
## survival example with more variables
## ------------------------------------------------------------
data(peakVO2, package = "randomForestSRC")
o <- varpro(Surv(ttodead, died)~., peakVO2)
imp <- importance(o, plot.it = TRUE)
print(imp)

## ------------------------------------------------------------
## high dimensional survival example
## ------------------------------------------------------------
data(vdv, package = "randomForestSRC")
o <- varpro(Surv(Time, Censoring)~., vdv)
print(importance(o))

## ------------------------------------------------------------
## high dimensional survival example without sparse option
## ------------------------------------------------------------
data(vdv, package = "randomForestSRC")
o <- varpro(Surv(Time, Censoring)~., vdv, sparse = FALSE)
print(importance(o))
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## ----------------------------------------------------------------------
## high dimensional survival example using different split-weight methods
## ----------------------------------------------------------------------
data(vdv, package = "randomForestSRC")
f <- as.formula(Surv(Time, Censoring)~.)

## lasso only
print(importance(varpro(f, vdv, split.weight.method = "lasso")))

## lasso and vimp
print(importance(varpro(f, vdv, split.weight.method = "lasso vimp")))

## lasso, vimp and shallow trees
print(importance(varpro(f, vdv, split.weight.method = "lasso vimp tree")))

## ------------------------------------------------------------
## largish data (iowa housing data)
## to speed up calculations convert data to all real
## ------------------------------------------------------------

## first we roughly impute the data
data(housing, package = "randomForestSRC")
dta <- roughfix(housing)
dta <- data.frame(data.matrix(dta))

## varpro call
o <- varpro(SalePrice~., dta)
print(importance(o))

## ------------------------------------------------------------
## large data: illustrates different ways to improve speed
## ------------------------------------------------------------

n <- 25000
p <- 50
d <- data.frame(y = rnorm(n), x = matrix(rnorm(n * p), n))

## use large nodesize
print(system.time(o <- varpro(y~., d, ntree = 100, nodesize = 200)))
print(importance(o))

## use large nodesize, smaller bootstrap
print(system.time(o <- varpro(y~., d, ntree = 100, nodesize = 200,

sampsize = 100)))
print(importance(o))

## ------------------------------------------------------------
## custom split-weights (hidden option)
## ------------------------------------------------------------

## load the data
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data(BostonHousing, package = "mlbench")

## make some features into factors
Boston <- BostonHousing
Boston$zn <- factor(Boston$zn)
Boston$chas <- factor(Boston$chas)
Boston$lstat <- factor(round(0.2 * Boston$lstat))
Boston$nox <- factor(round(20 * Boston$nox))
Boston$rm <- factor(round(Boston$rm))

## get default custom split-weights: a named real vector
swt <- get.splitweight.custom(medv~.,Boston)

## define custom splits weight
swt <- swt[grepl("crim", names(swt)) |

grepl("zn", names(swt)) |
grepl("nox", names(swt)) |
grepl("rm", names(swt)) |
grepl("lstat", names(swt))]

swt[grepl("nox", names(swt))] <- 4
swt[grepl("lstat", names(swt))] <- 4

swt <- c(swt, strange=99999)

cat("custom split-weight\n")
print(swt)

## call varpro with the custom split-weights
o <- varpro(medv~.,Boston,split.weight.custom=swt,verbose=TRUE,sparse=FALSE)
cat("varpro result\n")
print(importance(o))
print(get.vimp(o, pretty=FALSE))
print(get.orgvimp(o, pretty=FALSE))

varpro.news Show the NEWS file

Description

Show the NEWS file of the varPro package.

Usage

varpro.news(...)

Arguments

... Further arguments passed to or from other methods.



varpro.strength 51

Value

None.

Author(s)

Min Lu and Hemant Ishwaran

varpro.strength Obtain Strength Array and Other Values from a VarPro Object

Description

Used to parse values from a VarPro object.

Usage

varpro.strength(object,
newdata,
m.target = NULL,
max.rules.tree = 150,
max.tree = 150,
stat = c("importance", "complement", "oob", "none"),
membership = FALSE,
neighbor = 5,
seed = NULL,
do.trace = FALSE, ...)

Arguments

object rfsrc object.

newdata Optional test data. If provided, returns branch and complementary branch mem-
bership of the training data corresponding to the test cases.

m.target Character string specifying the target outcome for multivariate families. If un-
specified, a default is selected automatically.

max.rules.tree Maximum number of rules extracted per tree.

max.tree Maximum number of trees used for rule extraction.

stat Statistic to output. Options include "importance", "complement mean", and
"oob mean".

membership Return out-of-bag and complementary membership indices for each rule?

neighbor Nearest neighbor parameter, used only when newdata is specified.

seed Seed for reproducibility.

do.trace Enable detailed trace output.

... Additional arguments.
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Details

Not intended for direct end-user use; primarily designed for internal package operations.

Value

Object coerced so as to work with other functions in the package.

Examples

## ------------------------------------------------------------
## regression example: boston housing
## ------------------------------------------------------------

## load the data
data(BostonHousing, package = "mlbench")

o <- randomForestSRC::rfsrc(medv~., BostonHousing, ntree=100)

## call varpro.strength
varpro.strength(object = o, max.rules.tree = 10, max.tree = 15)

## call varpro.strength with test data
varpro.strength(object = o, newdata = BostonHousing[1:3,], max.rules.tree = 10, max.tree = 15)
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