Package ‘vald.extractor’

January 22, 2026
Type Package

Title Robust Pipeline for "VALD' 'ForceDecks' Data Extraction and
Analysis

Version 0.1.0

Description Provides a robust and reproducible pipeline for extracting,
cleaning, and analyzing athlete performance data generated by "VALD'
'"ForceDecks' systems. The package supports batch-oriented data processing
for large datasets, standardized data transformation workflows, and
visualization utilities for sports science research and performance
monitoring. It is designed to facilitate reproducible analysis across
multiple sports with comprehensive documentation and error handling.

License MIT + file LICENSE
Encoding UTF-8
RoxygenNote 7.3.3

Imports readxl, httr, jsonlite, data.table, ggplot2, dplyr, tidyr,
stringr, lubridate, valdr, stats, utils

Suggests knitr, rmarkdown, testthat (>= 3.0.0)

VignetteBuilder knitr
URL https://github.com/praveenmaths89/vald.extractor

BugReports https://github.com/praveenmaths89/vald.extractor/issues
NeedsCompilation no

Author Praveen D Chougale [aut, cre],
Usha Anathakumar [aut]

Maintainer Praveen D Chougale <praveenmaths89@gmail.com>
Repository CRAN
Date/Publication 2026-01-22 09:40:02 UTC

https://github.com/praveenmaths89/vald.extractor
https://github.com/praveenmaths89/vald.extractor/issues

2 classify_sports

Contents
classify_sports. e e e e e 2
fetch_vald_batch e 3
fetch_vald _metadata 4
patch_metadata 5
plot_vald_compare 6
plot_vald_trends L e 8
Split_by_test e e 9
standardize_vald_metadata e 10
summary_vald_metrics 11

Index 13

classify_sports Automated Sports Taxonomy Mapping
Description

Applies regex-based pattern matching to standardize inconsistent sport/team naming conventions
into a clean categorical variable. This is the core "value-add" for multi-sport organizations where
team names may vary (e.g., "Football", "Soccer", "FSI" all map to "Football").

Usage
classify_sports(
data,
group_col = "all_group_names",
output_col = "sports_clean”
)
Arguments
data Data frame containing athlete metadata.
group_col Character. Name of the column containing group/team names. Default is "all_group_names".
output_col Character. Name for the new standardized sports column. Default is "sports_clean".
Details

Classify Sports from Group Names

Value

Data frame with an additional column containing standardized sports categories.

fetch_vald_batch 3

Examples

if (FALSE) {
metadata <- standardize_vald_metadata(profiles, groups)
metadata <- classify_sports(metadata)
table(metadata$sports_clean)

3

fetch_vald_batch Robust Batch Extraction of VALD Trials

Description

Implements chunked trial extraction from VALD ForceDecks API with fault-tolerant error handling.
This function prevents timeout errors and memory issues when working with large datasets by
processing data in manageable chunks.

Usage

fetch_vald_batch(start_date, chunk_size = 100, verbose = TRUE)

Arguments
start_date Character string in ISO 8601 format (e.g., "2020-01-01T00:00:00Z"). The start-
ing date for data extraction.
chunk_size Integer. Number of tests to process per batch. Default is 100. Reduce this value
if you experience timeout errors.
verbose Logical. If TRUE, prints progress messages. Default is TRUE.
Details

Fetch VALD ForceDecks Data in Batches

This function first retrieves all test metadata, then iterates through tests in chunks to fetch associated
trial data. Each chunk is wrapped in a tryCatch block to ensure that errors in one chunk do not halt
the entire extraction process.

The chunking strategy is essential for large organizations with thousands of tests, as it prevents API
timeout errors and reduces memory pressure.
Value

A list containing two data frames:

tests Data frame of all tests metadata

trials Data frame of all trials (individual repetitions) data

4 fetch_vald_metadata

Examples

if (FALSE) {
Set VALD credentials first
valdr::set_credentials(
client_id = "your_client_id",
client_secret = "your_client_secret”,
tenant_id = "your_tenant_id",
region = "aue

)

"

Fetch data from 2020 onwards in chunks of 100
vald_data <- fetch_vald_batch(
start_date = "2020-01-01T00:00:00Z",
chunk_size = 100

)

Access tests and trials
tests_df <- vald_data$tests
trials_df <- vald_data$trials

fetch_vald_metadata Retrieve Athlete Profiles and Group Assignments

Description

Authenticates with VALD API using OAuth?2 client credentials flow and retrieves complete athlete
profile and group membership data. This function handles token management, pagination, and
robust JSON parsing.

Usage
fetch_vald_metadata(
client_id,
client_secret,
tenant_id,
region = "aue",
verbose = TRUE
)
Arguments
client_id Character. Your VALD API client ID.
client_secret Character. Your VALD API client secret.
tenant_id Character. Your VALD tenant ID.
region Character. VALD region code (e.g., "aue" for Australia East). Default is "aue".

verbose Logical. If TRUE, prints progress messages. Default is TRUE.

patch_metadata 5

Details

Fetch VALD Metadata via OAuth2

Value
A list containing two data frames:

profiles Complete athlete profile data

groups Group/team membership data

Examples

if (FALSE) {
metadata <- fetch_vald_metadata(

client_id = "your_client_id",
client_secret = "your_client_secret”,
tenant_id = "your_tenant_id"

)

profiles <- metadata$profiles
groups <- metadata$groups

}

patch_metadata Fix Missing or Incorrect Athlete Demographics

Description

Allows users to provide an external Excel or CSV file containing corrected demographic informa-
tion (e.g., sex, date of birth) for athletes with missing or incorrect data in the VALD system. This
function merges the corrections and updates the master metadata.

Usage

patch_metadata(
data,
patch_file,
patch_sheet = 1,
id_col = "profileld”,
fields_to_patch = c("sex"”, "dateOfBirth"),
verbose = TRUE

6 plot_vald_compare

Arguments
data Data frame. Master metadata or analysis dataset.
patch_file Character. Path to Excel (.xlsx) or CSV (.csv) file containing corrections.
patch_sheet Character or integer. For Excel files, which sheet to read. Default is 1 (first
sheet).
id_col Character. Name of the ID column in both data and patch_file. Default is
"profileld".

fields_to_patch

Character vector. Column names to update from the patch file. Default is
c("sex", "dateOfBirth").

verbose Logical. If TRUE, prints progress messages. Default is TRUE.

Details

Patch Missing Metadata from External File

Value

Data frame with patched metadata.

Examples

if (FALSE) {
Create an Excel file with columns: profileld, sex, dateOfBirth
Then patch the metadata
patched_data <- patch_metadata(
data = athlete_metadata,
patch_file = "corrections.xlsx",
fields_to_patch = c("sex", "dateOfBirth")
)

Check results
table(patched_data$sex)

plot_vald_compare Boxplot Comparison of Metrics by Sport, Sex, or Team

Description

Creates boxplots to compare performance metrics across different groups (e.g., sports, sex, teams).
Useful for benchmarking and identifying performance differences between populations.

plot_vald_compare

Usage
plot_vald_compare(
data,
metric_col,
group_col = "sports”,
fill_col = "sex",
title = NULL,
y_label = NULL
)
Arguments
data Data frame. Test data with grouping variables and metrics.
metric_col Character. Name of the metric to plot.
group_col Character. Primary grouping variable (x-axis). Default is "sports".
fill_col Character. Optional fill color grouping (e.g., "sex"). Default is "sex".
title Character. Plot title. If NULL, auto-generates from metric name.
y_label Character. Y-axis label. If NULL, uses metric_col.
Details

Compare Performance Across Groups

Value

A ggplot2 object.

Examples

if (FALSE) {
test_datasets <- split_by_test(final_analysis_data)

Compare CMJ peak force across sports and sex
plot_vald_compare(

data = test_datasets$CMJ,

metric_col = "PEAK_FORCE_Both”,

group_col = "sports”,
fill_col = "sex",
title = "Peak Force Comparison by Sport and Sex”

)
}

8 plot_vald_trends

plot_vald_trends Time-Series Visualization of Performance Metrics

Description

Creates professional line plots showing how performance metrics change over time for individual
athletes or groups. Useful for tracking training adaptations, injury recovery, and seasonal trends.

Usage

plot_vald_trends(
data,
date_col = "Testdate”,
metric_col,
group_col = NULL,
facet_col = NULL,

title = NULL,
smooth = FALSE
)
Arguments
data Data frame. Test data with a date column and at least one metric.
date_col Character. Name of the date column. Default is "Testdate".
metric_col Character. Name of the metric to plot.
group_col Character. Optional grouping variable (e.g., "profileld", "sports"). If provided,
separate lines are drawn for each group.
facet_col Character. Optional faceting variable (e.g., "sex"). Creates separate panels for
each level.
title Character. Plot title. If NULL, auto-generates from metric name.
smooth Logical. If TRUE, adds a smoothed trend line. Default is FALSE.
Details

Plot Longitudinal Trends for VALD Metrics

Value

A ggplot2 object.

split_by._test 9

Examples

if (FALSE) {
test_datasets <- split_by_test(final_analysis_data)

Plot individual athlete trends
plot_vald_trends(
data = test_datasets$CMJ,
metric_col = "PEAK_FORCE_Both",
group_col = "profileld”,
facet_col = "sex”

)

Plot sport-level averages
sport_avg <- test_datasets$CMJ %>%
group_by(Testdate, sports) %>%
summarise(avg_force = mean(PEAK_FORCE_Both, na.rm = TRUE))

plot_vald_trends(
data = sport_avg,
date_col = "Testdate”,

metric_col = "avg_force”,
group_col = "sports”
)
}
split_by_test Generic Test-Type Splitting with Suffix Removal
Description

Takes a master wide-format dataset and returns a named list of data frames, one per test type (e.g.,
CMJ, DJ, ISO). Crucially, this function automatically strips the test-type suffix from column names
within each sub-dataframe, enabling generic analysis code that works across all test types.

This implements the "DRY" (Don’t Repeat Yourself) principle by allowing users to write one anal-
ysis function that works for any test type.

Usage
split_by_test(data, metadata_cols = NULL, verbose = TRUE)

Arguments

data Data frame. Wide-format test data with columns ending in test type suffixes
(e.g., "PEAK_FORCE_Both_CMIJ").

metadata_cols Character vector. Column names to retain as metadata in each split dataset.
Default includes common identifiers and demographics.

verbose Logical. If TRUE, prints progress messages. Default is TRUE.

10 standardize_vald_metadata

Details

Split Wide-Format Data by Test Type

Value

Named list of data frames, one per test type. Each data frame contains:

¢ All metadata columns

* Test-specific metrics with suffixes removed (e.g., "PEAK_FORCE_Both")

Examples

if (FALSE) {
After joining tests, trials, and metadata into wide format
test_datasets <- split_by_test(
data = final_analysis_data,
metadata_cols = c("profileId”, "sex”, "Testdate”, "age

)

n

, "sports"”)

Access individual test datasets
cmj_data <- test_datasets$CMJ
dj_data <- test_datasets$DJ

Note: Column names are now generic (e.g., "PEAK_FORCE_Both" not "PEAK_FORCE_Both_CMJ")
This allows you to write one function that works for all test types

standardize_vald_metadata
Create Unified Athlete Metadata with Group Assignments

Description

Processes raw profile and group data to create a clean, analysis-ready metadata table. Unnests group
memberships, concatenates group names, and applies sports classification logic.

Usage

standardize_vald_metadata(profiles, groups, verbose = TRUE)

Arguments
profiles Data frame. Raw profile data from fetch_vald_metadata().
groups Data frame. Raw group data from fetch_vald_metadata().

verbose Logical. If TRUE, prints progress messages. Default is TRUE.

summary_vald_metrics 11

Details

Standardize VALD Metadata

Value

A data frame with one row per athlete containing:

profileld Unique athlete identifier

givenName, familyName Athlete names

dateOfBirth, sex Demographic information

all_group_names Comma-separated list of all group memberships

all_group_ids Comma-separated list of all group IDs

Examples

if (FALSE) {
metadata <- fetch_vald_metadata(client_id, client_secret, tenant_id)
clean_metadata <- standardize_vald_metadata(
profiles = metadata$profiles,
groups = metadata$groups
)
}

summary_vald_metrics Dynamic Summary Table for Performance Metrics

Description

Creates a comprehensive summary table showing mean, standard deviation, coefficient of variation,
and sample size for all numeric performance metrics. Can be grouped by test type, sex, sport, or
any combination thereof.

Usage
summary_vald_metrics(
data,
group_vars = c("sex”, "sports"),

exclude_cols = c("profileld”, "athletelId”, "testId”, "Testdate”, "dateofbirth”, "age",
"Weight_on_Test_Day"),
digits = 2
)

12 summary_vald_metrics

Arguments
data Data frame. Test data (typically from split_by_test()).
group_vars Character vector. Variables to group by. Default is c("sex", "sports").

exclude_cols Character vector. Column names to exclude from summary (typically metadata
columns). Default includes common ID and date fields.

digits Integer. Number of decimal places for rounding. Default is 2.

Details

Generate Summary Statistics for VALD Metrics

Value

Data frame with summary statistics (Mean, SD, CV, N) for each metric and grouping combination.

Examples

if (FALSE) {
test_datasets <- split_by_test(final_analysis_data)
cmj_summary <- summary_vald_metrics(
data = test_datasets$CMJ,
group_vars = c("sex", "sports")
)

print(cmj_summary)

Index

classify_sports, 2

fetch_vald_batch, 3
fetch_vald_metadata, 4

patch_metadata, 5
plot_vald_compare, 6
plot_vald_trends, 8

split_by_test, 9
standardize_vald_metadata, 10
summary_vald_metrics, 11

13

	classify_sports
	fetch_vald_batch
	fetch_vald_metadata
	patch_metadata
	plot_vald_compare
	plot_vald_trends
	split_by_test
	standardize_vald_metadata
	summary_vald_metrics
	Index

