Package ‘unifiedml’

January 10, 2026
Type Package
Title Unified Interface for Machine Learning Models
Version 0.2.0
Date 2026-01-10
Maintainer T. Moudiki <thierry.moudiki@gmail.com>

Description Provides a unified R6-based interface for various machine learning models with auto-
matic interface detection, consistent cross-validation, model interpretations via numerical deriva-
tives, and visualization. Supports both regression and classification tasks with any model func-
tion that follows R's standard modeling conventions (formula or matrix interface).

License MIT + file LICENSE
URL https://github.com/Techtonique/unifiedml

BugReports https://github.com/Techtonique/unifiedml/issues
Depends R (>= 3.5.0), doParallel, R6, foreach
Imports Rcpp (>=1.1.0)

Suggests testthat (>= 3.0.0), knitr, rmarkdown, glmnet, randomForest,
el071, covr, spelling, MASS

VignetteBuilder knitr

Encoding UTF-8

RoxygenNote 7.3.2

LinkingTo Rcpp

Config/testthat/edition 3
NeedsCompilation yes

Author T. Moudiki [aut, cre]

Repository CRAN

Date/Publication 2026-01-10 11:10:02 UTC

https://github.com/Techtonique/unifiedml
https://github.com/Techtonique/unifiedml/issues

2 unifiedml-package

Contents
unifiedml-package L 2
Cross_val_SCOTE e 3
formula_to_matrix e e e 4
matrix_to_formula L 4
Model e e 5
print.model_adapter L e 8
repp_hello_world 9

Index 10

unifiedml-package Unified Interface for Machine Learning Models
Description

Provides a unified R6-based interface for various machine learning models with automatic interface
detection, consistent cross-validation, model interpretations via numerical derivatives, and visual-
ization. Supports both regression and classification tasks with any model function that follows R’s
standard modeling conventions (formula or matrix interface).

Package Content

Index of help topics:

Model Unified Machine Learning Interface using R6

cross_val_score Cross-Validation for Model Objects

formula_to_matrix Convert formula-based model function to matrix
interface

matrix_to_formula Convert matrix-based model function to formula
interface

print.model_adapter Print Method for Model Adapters

rcpp_hello_world Simple function using Rcpp

unifiedml-package Unified Interface for Machine Learning Models

Maintainer

T. Moudiki <thierry.moudiki @ gmail.com>

Author(s)

T. Moudiki [aut, cre]

cross_val_score 3

cross_val_score Cross-Validation for Model Objects

Description

Perform k-fold cross-validation with consistent scoring metrics across different model types. The
scoring metric is automatically selected based on the detected task type.

Usage

cross_val_score(
model,
X,
Y,
cv =5,
scoring = NULL,
show_progress = TRUE,

cl = NULL,
)
Arguments
model A Model object
X Feature matrix or data.frame
y Target vector (type determines regression vs classification)
cv Number of cross-validation folds (default: 5)
scoring Scoring metric: "rmse", "mae", "accuracy", or "f1" (default: auto-detected based

on task)
show_progress Whether to show progress bar (default: TRUE)
cl Optional cluster for parallel processing (not yet implemented)

Additional arguments passed to model$fit()

Value

Vector of cross-validation scores for each fold

Examples

library(glmnet)
X <= matrix(rnorm(100), ncol = 4)
y <= 2*%X[,1] - 1.5%X[,2] + rnorm(25) # numeric -> regression

mod <- Model$new(glmnet::glmnet)
mod$fit(X, y, alpha = @, lambda = 0.1)
cv_scores <- cross_val_score(mod, X, y, cv = 5) # auto-uses RMSE

4 matrix_to_formula

mean(cv_scores) # Average RMSE

Classification with accuracy scoring

data(iris)

X_class <- as.matrix(iris[, 1:4])

y_class <- iris$Species # factor -> classification

mod2 <- Model$new(e1071::svm)
cv_scores2 <- cross_val_score(mod2, X_class, y_class, cv = 5) # auto-uses accuracy
mean(cv_scores2) # Average accuracy

formula_to_matrix Convert formula-based model function to matrix interface

Description

Convert formula-based model function to matrix interface

Usage

formula_to_matrix(fit_func, predict_func = NULL, intercept = TRUE)

Arguments

fit_func Function accepting formula and data
predict_func Optional prediction function; if NULL, uses generic predict()

intercept Include intercept in formula (default TRUE)

Value

List with fit and predict methods (class: model_adapter)

matrix_to_formula Convert matrix-based model function to formula interface

Description

Convert matrix-based model function to formula interface

Usage

matrix_to_formula(fit_func, predict_func = NULL, drop_intercept = TRUE)

Model

Arguments

fit_func Function accepting x matrix and y vector

predict_func Optional prediction function; if NULL, uses generic predict()

drop_

Value

intercept Remove intercept column from model.matrix (default TRUE)

List with fit and predict methods (class: model_adapter)

Model

Unified Machine Learning Interface using R6

Description

Provides a consistent interface for various machine learning models in R, with automatic detection
of formula vs matrix interfaces, built-in cross-validation, model interpretability, and visualization.

An R6 class that provides a unified interface for regression and classification models with auto-
matic interface detection, cross-validation, and interpretability features. The task type (regression
vs classification) is automatically detected from the response variable type.

Public fields

model_fn The modeling function (e.g., glmnet::glmnet, randomForest::randomForest)

fitted The fitted model object

task Type of task: "regression" or "classification" (automatically detected)

X_train Training features matrix

y_train Training target vector

Methods

Public methods:

Model$new()
Model$fit()
Model$predict()
Model$print()
Model$summary ()
Model$plot ()
Model$clone_model ()
Model$clone()

Method new(): Initialize a new Model

Usage:
Model$new(model_fn)

Model

Arguments:

model_fn A modeling function (e.g., glmnet, randomForest, svm)

Returns: A new Model object

Method fit(): Fitthe model to training data
Automatically detects task type (regression vs classification) based on the type of the response
variable y. Numeric y -> regression, factor y -> classification.

Usage:

Model$fit(X, vy, ...)

Arguments:

X Feature matrix or data.frame

y Target vector (numeric for regression, factor for classification)

. Additional arguments passed to the model function

Returns: self (invisible) for method chaining

Method predict(): Generate predictions from fitted model
Usage:
Model$predict(X, type = NULL, ...)
Arguments:

X Feature matrix for prediction
" n n "

type Type of prediction ("response”, "class", "probabilities")
. Additional arguments passed to predict function

Returns: Vector of predictions

Method print(): Print model information

Usage:
Model$print()

Returns: self (invisible) for method chaining

Method summary(): Compute numerical derivatives and statistical significance
Uses finite differences to compute approximate partial derivatives for each feature, providing
model-agnostic interpretability.

Usage:

Model$summary(h = 0.01, alpha = 0.05)

Arguments:

h Step size for finite differences (default: 0.01)

alpha Significance level for p-values (default: 0.05)

Details: The method computes numerical derivatives using central differences.
Statistical significance is assessed using t-tests on the derivative estimates across samples.

Returns: A data.frame with derivative statistics (invisible)

Model

Method plot(): Create partial dependence plot for a feature

Visualizes the relationship between a feature and the predicted outcome while holding other fea-

tures at their mean values.

Usage:
Model$plot(feature = 1, n_points = 100)

Arguments:
feature Index or name of feature to plot
n_points Number of points for the grid (default: 100)

Returns: self (invisible) for method chaining

Method clone_model(): Create a deep copy of the model

Useful for cross-validation and parallel processing where multiple independent model instances

are needed.

Usage:
Model$clone_model ()

Returns: A new Model object with same configuration

Method clone(): The objects of this class are cloneable with this method.

Usage:
Model$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Author(s)

Your Name

Examples

Regression example with glmnet

library(glmnet)

X <= matrix(rnorm(100), ncol = 4)

y <= 2*X[,1] - 1.5%xX[,2] + rnorm(25) # numeric -> regression

mod <- Model$new(glmnet::glmnet)
mod$fit(X, y, alpha = @, lambda = 0.1)
mod$summary ()

predictions <- mod$predict(X)

Classification example

data(iris)

iris_binary <- iris[iris$Species %in% c("setosa"”, "versicolor"), 1]
X_class <- as.matrix(iris_binary[, 1:41)

y_class <- iris_binary$Species # factor -> classification

mod2 <- Model$new(e1071::svm)
mod2$fit(X_class, y_class, kernel = "radial”)

8 print.model_adapter

mod2$summary ()

Cross-validation
cv_scores <- cross_val_score(mod, X, y, cv = 5)

print.model_adapter Print Method for Model Adapters

Description

Prints a short summary of a model_adapter object, including the signatures of its fit and predict
functions.

Usage

S3 method for class 'model_adapter'
print(x, ...)

Arguments

X An object of class model_adapter.

Further arguments passed to or from other methods (ignored).

Value

Invisibly returns x.

Examples

adapter <- list(

fit = function(data, y) NULL,

predict = function(newdata) numeric(@)
)
class(adapter) <- "model_adapter”
print(adapter)

rcpp_hello_world

rcpp_hello_world Simple function using Rcpp

Description

Simple function using Rcpp

Usage
rcpp_hello_world()

Examples

Not run:
rcpp_hello_world()

End(Not run)

Index

* package
unifiedml-package, 2

cross_val_score, 3
formula_to_matrix, 4

matrix_to_formula, 4
Model, 5

print.model_adapter, 8
rcpp_hello_world, 9

unifiedml (unifiedml-package), 2
unifiedml-package, 2

10

	unifiedml-package
	cross_val_score
	formula_to_matrix
	matrix_to_formula
	Model
	print.model_adapter
	rcpp_hello_world
	Index

