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autotune_cissvae Autotune CISS-VAE hyperparameters with Optuna

Description

Performs hyperparameter optimization for CISS-VAE using Optuna with support for both tunable
and fixed parameters.

Usage

autotune_cissvae(
data,
index_col = NULL,
val_proportion = 0.1,
replacement_value = 0,
columns_ignore = NULL,
imputable_matrix = NULL,
binary_feature_mask = NULL,
clusters,
save_model_path = NULL,
save_search_space_path = NULL,
n_trials = 20,
study_name = "vae_autotune",
device_preference = "cuda",
show_progress = FALSE,
optuna_dashboard_db = NULL,
load_if_exists = TRUE,
seed = 42,
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verbose = FALSE,
constant_layer_size = FALSE,
evaluate_all_orders = FALSE,
max_exhaustive_orders = 100,
num_hidden_layers = c(1, 4),
hidden_dims = c(64, 512),
latent_dim = c(10, 100),
latent_shared = c(TRUE, FALSE),
output_shared = c(TRUE, FALSE),
lr = c(1e-04, 0.001),
decay_factor = c(0.9, 0.999),
weight_decay = 0.001,
beta = 0.01,
num_epochs = 500,
batch_size = 4000,
num_shared_encode = c(0, 1, 3),
num_shared_decode = c(0, 1, 3),
encoder_shared_placement = c("at_end", "at_start", "alternating", "random"),
decoder_shared_placement = c("at_start", "at_end", "alternating", "random"),
refit_patience = 2,
refit_loops = 100,
epochs_per_loop = 500,
reset_lr_refit = c(TRUE, FALSE),
debug = FALSE

)

Arguments

data Data frame or matrix containing the input data

index_col String name of index column to preserve (optional)

val_proportion Proportion of non-missing data to hold out for validation.
replacement_value

Numeric value used to replace missing entries before model input.

columns_ignore Character vector of column names to exclude from imputation scoring.
imputable_matrix

Logical matrix indicating entries allowed to be imputed.
binary_feature_mask

Logical vector marking which columns are binary.

clusters Integer vector specifying cluster assignments for each row.
save_model_path

Optional path to save the best model’s state_dict
save_search_space_path

Optional path to save search space configuration

n_trials Number of Optuna trials to run

study_name Name identifier for the Optuna study
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device_preference

Preferred device ("cuda", "mps", "cpu")

show_progress Whether to display Rich progress bars during training
optuna_dashboard_db

RDB storage URL/file for Optuna dashboard

load_if_exists Whether to load existing study from storage

seed Base random seed for reproducible results

verbose Whether to print detailed diagnostic information
constant_layer_size

Whether all hidden layers use same dimension
evaluate_all_orders

Whether to test all possible layer arrangements
max_exhaustive_orders

Max arrangements to test when evaluate_all_orders = TRUE
num_hidden_layers

Numeric(2) vector: (min, max) for number of hidden layers

hidden_dims Numeric vector: hidden layer dimensions to test

latent_dim Numeric(2) vector: (min, max) for latent dimension

latent_shared Logical vector: whether latent space is shared across clusters

output_shared Logical vector: whether output layer is shared across clusters

lr Numeric(2) vector: (min, max) learning rate range

decay_factor Numeric(2) vector: (min, max) LR decay factor range

weight_decay Weight decay (L2 penalty) used in Adam optimizer.

beta Numeric: KL divergence weight (fixed or range)

num_epochs Integer: number of initial training epochs (fixed or range)

batch_size Integer: mini-batch size (fixed or range)
num_shared_encode

Numeric vector: numbers of shared encoder layers to test
num_shared_decode

Numeric vector: numbers of shared decoder layers to test
encoder_shared_placement

Character vector: placement strategies for encoder shared layers
decoder_shared_placement

Character vector: placement strategies for decoder shared layers

refit_patience Integer: early stopping patience for refit loops

refit_loops Integer: maximum number of refit loops
epochs_per_loop

Integer: epochs per refit loop

reset_lr_refit Logical vector: whether to reset LR before refit

debug Logical; if TRUE, additional metadata is returned for debugging.
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Value

A named list with the following components:

imputed_dataset A data frame containing the imputed values.

model The fitted CISS-VAE model object

cluster_dataset The ClusterDataset object used

clusters The vector of cluster assignments

study An optuna study object containing the trial results

results A data frame of trial results

val_data Validation dataset used

val_imputed Imputed values of validation dataset

Tips

• Use cluster_on_missing() or cluster_on_missing_prop() for cluster assignments.

• Use GPU computation when available; call check_devices() to see available devices.

• Adjust batch_size based on memory (larger is faster but uses more memory).

• Set verbose = TRUE or show_progress = TRUE to monitor training.

• Explore the optuna-dashboard (see vignette optunadb) for hyperparameter importance.

• For binary features, set names(binary_feature_mask) <- colnames(data).

Examples

## Requires a working Python environment via reticulate
## Examples are wrapped in try() to avoid failures on CRAN check systems
try({
reticulate::use_virtualenv("cissvae_environment", required = TRUE)

data(df_missing)
data(clusters)

## Run autotuning
aut <- autotune_cissvae(

data = df_missing,
index_col = "index",
clusters = clusters$clusters,
n_trials = 3,
study_name = "comprehensive_vae_autotune",
device_preference = "cpu",
seed = 42,

## Hyperparameter search space
num_hidden_layers = c(2, 5),
hidden_dims = c(64, 512),
latent_dim = c(10, 100),
latent_shared = c(TRUE, FALSE),
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output_shared = c(TRUE, FALSE),
lr = c(0.01, 0.1),
decay_factor = c(0.99, 1.0),
beta = c(0.01, 0.1),
num_epochs = c(5, 20),
batch_size = c(1000, 4000),
num_shared_encode = c(0, 1, 2),
num_shared_decode = c(0, 1, 2),

## Placement strategies
encoder_shared_placement = c(

"at_end", "at_start",
"alternating", "random"

),
decoder_shared_placement = c(

"at_start", "at_end",
"alternating", "random"

),

refit_patience = 2,
refit_loops = 10,
epochs_per_loop = 5,
reset_lr_refit = c(TRUE, FALSE)

)

## Visualize architecture
plot_vae_architecture(

aut$model,
title = "Optimized CISSVAE Architecture"

)
})

check_devices Check PyTorch device availability

Description

This function prints the available devices (cpu, cuda, mps) detected by PyTorch. If your mps/cuda
device is not shown, check your PyTorch installation.

Usage

check_devices(env_path = NULL)

Arguments

env_path Path to virtual environment containing PyTorch and ciss-vae. Defaults to NULL.
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Value

Vector of strings for available devices.

Examples

try(
check_devices()
)

clusters Cluster assignments based on missingness patterns

Description

A tibble assigning each observation in df_missing to a cluster determined by its missingness pat-
tern.

Usage

clusters

Format

A tibble with 8000 rows and 2 variables:

index Integer. Row identifier imported from data_raw/clusters.csv.

cluster Factor (or integer) giving the missingness-based cluster for each row.

Source

Imported from data_raw/clusters.csv, then renamed ...1 → index.

Examples

data(clusters)
table(clusters$cluster)
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cluster_heatmap Cluster-wise Heatmap of Missing Data Patterns

Description

Visualize the pattern of missing values in a dataset, arranged by cluster. Each column in the heatmap
represents one observation and each row a feature. Tiles indicate whether a value is missing (black)
or present (white). Cluster labels are shown as a column annotation bar above the heatmap. The
package ComplexHeatmap must be installed for this function to work.

Usage

cluster_heatmap(
data,
clusters,
cols_ignore = NULL,
show_row_names = TRUE,
missing_color = "black",
observed_color = "white",
title = "Missingness Heatmap by Cluster"

)

Arguments

data A data.frame or tibble containing the dataset with possible missing values.
Rows represent observations and columns represent features.

clusters A vector of cluster labels for each observation (row) in data. Must have the
same length as nrow(data).

cols_ignore Optional character vector of column names in data to exclude from the heatmap
(e.g., identifiers or non-feature columns).

show_row_names Logical. If TRUE, displays feature names on plot

missing_color Display color of missing values. Default black.

observed_color Display color of observed values. Default white.

title Optional plot title. Defaults to "Missingness Heatmap by Cluster"

Details

This function constructs a binary missingness matrix where 1 indicates a missing value and 0 a
present value. Columns (observations) are ordered by their cluster labels, and the function displays
a heatmap of missingness patterns using ComplexHeatmap. Cluster membership is displayed as
an annotation above the heatmap.

Value

A list of class "ComplexHeatmap" containing the heatmap object. This can be used for further
inspection or manual redraw.
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Examples

if(requireNamespace("ComplexHeatmap")){
# Simple example with small dataset
df <- data.frame(

x1 = c(1, NA, 3),
x2 = c(NA, 2, 3),
x3 = c(1, 2, NA)

)
cl <- c("A", "B", "A")
cluster_heatmap(df, cl)

# Example excluding a column prior to plotting
cluster_heatmap(df, cl, cols_ignore = "x2")

# Adding a 'Cluster' label and changing colors
cluster_heatmap(df, clusters = paste0("Cluster ", cl), cols_ignore = "x2",
missing_color = "red", observed_color = "blue")
}

cluster_on_missing Cluster on Missingness Patterns

Description

Given an R data.frame or matrix with missing values, clusters on the pattern of missingness and
returns cluster labels plus silhouette score.

Usage

cluster_on_missing(
data,
cols_ignore = NULL,
n_clusters = NULL,
seed = 42,
k_neighbors = NULL,
leiden_resolution = 0.25,
leiden_objective = "CPM",
use_snn = TRUE

)

Arguments

data A data.frame or matrix (samples × features), may contain NA.

cols_ignore Character vector of column names to ignore when clustering.

n_clusters Integer; if provided, will run KMeans with this many clusters. If NULL, will use
Leiden.
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seed Integer; random seed for KMeans (or reproducibility in Leiden).

k_neighbors Integer; minimum cluster size for Leiden. If NULL, defaults to nrow(data) %/%
25.

leiden_resolution

Resolution for Leiden Clustering.
leiden_objective

objective

use_snn use snn

Value

A list with components:

• clusters — integer vector of cluster labels

• silhouette — numeric silhouette score, or NA if not computable

cluster_on_missing_prop

Cluster Samples Based on Missingness Proportions

Description

Groups samples with similar patterns of missingness across features using either K-means clus-
tering (when n_clusters is specified) or Leiden (when n_clusters is NULL). This is useful for
detecting cohorts with shared missing-data behavior (e.g., site/batch effects).

Usage

cluster_on_missing_prop(
prop_matrix,
n_clusters = NULL,
seed = NULL,
k_neighbors = NULL,
leiden_resolution = 0.25,
use_snn = TRUE,
leiden_objective = "CPM",
metric = "euclidean",
scale_features = FALSE

)

Arguments

prop_matrix Matrix or data frame where rows are samples and columns are features, entries
are missingness proportions in [0,1]. Can be created with create_missingness_prop_matrix().

n_clusters Integer; number of clusters for KMeans. If NULL, uses Leiden (default: NULL).

seed Integer; random seed for KMeans reproducibility (default: NULL).
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k_neighbors Integer; Leiden minimum cluster size. If NULL, Python default is used (default:
NULL).

leiden_resolution

Numeric; Leiden cluster selection threshold (default: 0.25).

use_snn Logical; whether to use shared nearest neighbors (optional).
leiden_objective

Character; Leiden optimization objective (optional).

metric Character; distance metric. Options include: "euclidean", "cosine" (de-
fault: "euclidean").

scale_features Logical; whether to standardize feature columns before clustering samples (de-
fault: FALSE).

Value

A list with:

• clusters: Integer vector of cluster assignments per sample.

• silhouette_score: Numeric silhouette score, or NULL if not computable.

Examples

set.seed(123)

dat <- data.frame(
sample_id = paste0("s", 1:12),
# Two features measured at 3 timepoints each -> proportions by feature
A_1 = c(NA, rnorm(11)),
A_2 = c(NA, rnorm(11)),
A_3 = rnorm(12),
B_1 = rnorm(12),
B_2 = c(rnorm(10), NA, NA),
B_3 = rnorm(12)

)

pm <- create_missingness_prop_matrix(
dat,
index_col = "sample_id",
repeat_feature_names = c("A", "B")

)

## cluster_on_missing_prop requires a working Python environment via reticulate
## Examples are wrapped in try() to avoid failures on CRAN check systems
try({
res <- cluster_on_missing_prop(

pm,
n_clusters = 2,
metric = "cosine",
scale_features = TRUE

)
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table(res$clusters)
res$silhouette_score
})

cluster_summary Cluster-wise summary table using a separate cluster vector (gtsum-
mary + gt)

Description

Produce a cluster-stratified summary table using gtsummary, where the cluster assignments are
supplied as a separate vector. All additional arguments (...) are passed directly to gtsummary::tbl_summary(),
so users can specify all_continuous() / all_categorical() selectors and custom statistics.

Usage

cluster_summary(
data,
clusters,
add_options = list(add_overall = FALSE, add_n = TRUE, add_p = FALSE),
return_as = c("gtsummary", "gt"),
include = NULL,
...

)

Arguments

data A data.frame or tibble of features to summarize.

clusters A vector (factor, character, or numeric) of cluster labels with length equal to
nrow(data).

add_options List of post-processing options:

• add_overall (default FALSE): add overall column
• add_n (default TRUE) : add group Ns
• add_p (default FALSE): add p-values

return_as "gtsummary" (default) or "gt". When "gt", the function calls gtsummary::as_gt()
for rendering.

include Optional character vector of variables to include. Defaults to all columns in
data.

... Passed to gtsummary::tbl_summary() (e.g., statistic=, type=, digits=,
missing=, label=, etc.).

Value

A gtsummary::tbl_summary (default) or gt::gt_tbl if return_as="gt".
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Examples

if(requireNamespace("gtsummary")){
df <- data.frame(

age = rnorm(100, 60, 10),
bmi = rnorm(100, 28, 5),
sex = sample(c("F","M"), 100, TRUE)

)
cl <- sample(1:3, 100, TRUE)

cluster_summary(
data = df,
clusters = cl,
statistic = list(
gtsummary::all_continuous() ~ "{mean} ({sd})",
gtsummary::all_categorical() ~ "{n} / {N} ({p}%)"

),
missing = "always"

)
}

create_cissvae_env Create or reuse a CISSVAE Python virtual environment

Description

This function will either find an existing virtualenv by name (in the default location) or at a custom
filesystem path, or create it (and install CISSVAE into it).

Usage

create_cissvae_env(
envname = "cissvae_environment",
path = NULL,
install_python = FALSE,
python_version = "3.10"

)

Arguments

envname Name of the virtual environment (when using the default env location).

path Character; optional path to the directory in which to create/use the virtualenv.

install_python Logical; if TRUE, install Python if none of at least the requested version is found
on the system.

python_version Python version string (major.minor), used when installing Python.
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Value

NULL. Does not return anything

Examples

## Requires a working Python environment via reticulate
## Examples are wrapped in try() to avoid failures on CRAN check systems
try({
create_cissvae_env(
envname = "cissvae_environment",
install_python = FALSE,
python_version = "3.10")})

create_missingness_prop_matrix

Create Missingness Proportion Matrix

Description

Creates a matrix where each entry represents the proportion of missing values for each sample–feature
combination across multiple timepoints. Each sample will have one proportion value per feature.
Features may have repeated time points (columns named like feature_1, feature_2, ...). This
matrix can be used with cluster_on_missing_prop() to group samples with similar missingness
patterns.

Usage

create_missingness_prop_matrix(
data,
index_col = NULL,
cols_ignore = NULL,
na_values = c(NA, NaN, Inf, -Inf),
repeat_feature_names = character(0),
loose = FALSE

)

Arguments

data Data frame or matrix containing the input data with potential missing values.

index_col Character scalar. Name of an index column to exclude from analysis (optional).
If supplied and present, it will be removed from analysis; row names are pre-
served as-is.

cols_ignore Character vector of column names to exclude from the proportion matrix (op-
tional).

na_values Vector of values to treat as missing in addition to standard missing values. De-
faults to c(NA, NaN, Inf, -Inf).
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repeat_feature_names

Character vector of "base" feature names that have repeated timepoints. Repeat
measurements must be in the form <feature>_<timepoint> where <feature>
is alphanumeric (and may include dots) and <timepoint> is an integer (e.g.,
"CRP_1").

loose Logical. If True, will match any column starting with feature from repeat_feature_names

Value

A numeric matrix of dimension nrow(data) by n_features, where rows are samples and columns
are features (base names). Entries are per-sample missingness proportions in [0, 1]. The returned
matrix has an attribute "feature_columns_map": a named list mapping each output feature to the
source columns used to compute its proportion.

Examples

df <- data.frame(
id = paste0("s", 1:4),
CRP_1 = c(1.2, NA, 2.1, NaN),
CRP_2 = c(NA, NA, 2.0, 1.9),
IL6_1 = c(0.5, 0.7, Inf, 0.4),
IL6_2 = c(0.6, -Inf, 0.8, 0.5),
Albumin = c(3.9, 4.1, 4.0, NA)

)

m <- create_missingness_prop_matrix(
data = df,
index_col = "id",
cols_ignore = NULL,
repeat_feature_names = c("CRP", "IL6")

)

dim(m) # 4 x 3 (CRP, IL6, Albumin)
# per-sample proportion missing across CRP_1 and CRP_2
m[ , "CRP"]
attr(m, "feature_columns_map")

df_missing Sample dataset with missing values

Description

A tibble of simulated biomarker measurements with missing entries. Each row corresponds to one
observation (indexed by index), and the remaining columns are the measured biomarker values,
some of which are set to NA to demonstrate imputation workflows.

Usage

df_missing
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Format

A tibble with 8,000 rows and 30 variables:

index Integer. Row identifier imported from data_raw/df_missing.csv.

Age, Salary, ZipCode10001-ZipCode30003 Demographic columns. Omit from selection of vali-
dation set. No missingness

Y11, ..., Y55 Simulated Biomarker columns, have missingness

Source

Imported from data_raw/df_missing.csv, then renamed ...1 → index.

Examples

data(df_missing)
str(df_missing)
summary(df_missing)

dni Example dni matrix for demo of imputable_matrix

Description

A sample imputable_matrix (dataframe).

Usage

dni

Format

A dataframe:

imputable_matrix A mock imputable_matrix dataframe

Source

Imported from data_raw/dni.csv

Examples

data(dni)
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mock_surv Example survival data for demo of imputable_matrix

Description

A sample survival dataset

Usage

mock_surv

Format

A dataframe:

mock_surv A mock survival dataset

Source

Imported from data_raw/mock_survival.csv

Examples

data(mock_surv)

performance_by_cluster

Compute per-cluster and per-group performance metrics (MSE, BCE)

Description

Calculates mean squared error (MSE) for continuous features and binary cross-entropy (BCE) for
features you explicitly mark as binary, comparing model-imputed validation values against ground-
truth validation data.

Usage

performance_by_cluster(
res,
clusters = NULL,
group_col = NULL,
feature_cols = NULL,
binary_features = character(0),
by_group = TRUE,
by_cluster = TRUE,
cols_ignore = NULL

)
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Arguments

res A list containing CISS-VAE run outputs. Must include:

• res$val_data: validation data frame (with NA for non-validation cells)
• res$val_imputed: model-imputed validation predictions
• res$clusters: cluster labels for each row

clusters Optional vector (same length as rows in val_data) of cluster labels. If NULL,
will use res$clusters.

group_col Optional character, name of the column in val_data for grouping.

feature_cols Character vector specifying which feature columns to evaluate. Defaults to all
numeric columns except group_col and those in cols_ignore.

binary_features

Character vector naming those columns (subset of feature_cols) that should
use BCE instead of MSE.

by_group Logical; if TRUE (default), summarize by group_col.

by_cluster Logical; if TRUE (default), summarize by cluster.

cols_ignore Character vector of column names to exclude from scoring (e.g., “id”).

Details

For features listed in binary_features, performance is binary cross-entropy (BCE):

−[y log(p) + (1− y) log(1− p)]

. For other numeric features, performance is mean squared error (MSE).

Value

A named list containing:

• overall: overall average metric (MSE for continuous, BCE for binary)

• per_cluster: summaries by cluster

• per_group: summaries by group

• group_by_cluster: summaries by group and cluster

• per_feature_overall: average per-feature metric

Examples

library(tidyverse)
library(reticulate)
library(rCISSVAE)
library(kableExtra)
library(gtsummary)

## Make example results
data_complete = data.frame(
index = 1:10,
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x1 = rnorm(10),
x2 = rnorm(10)*rnorm(10, mean = 50, sd=10)
)

missing_mask = matrix(data = c(rep(FALSE, 10),
sample(c(TRUE, FALSE),
size = 20, replace = TRUE,
prob = c(0.7, 0.3))), nrow = 10)

## Example validation dataset
val_data = data_complete
val_data[missing_mask] <- NA

## Example 'imputed' validation dataset
val_imputed = data.frame(index = 1:10, x1 = mean(data_complete$x1), x2 = mean(data_complete$x2))
val_imputed[missing_mask] <- NA

## Example result list
result = list("val_data" = val_data, "val_imputed" = val_imputed)
clusters = sample(c(0, 1), size = 10, replace = TRUE)

## Run the function
performance_by_cluster(res = result,

group_col = NULL,
clusters = clusters,
feature_cols = NULL,
by_group = FALSE,
by_cluster = TRUE,
cols_ignore = c("index")

)

plot_vae_architecture Plot VAE Architecture Diagram

Description

Creates a horizontal schematic diagram of the CISS-VAE architecture, showing shared and cluster-
specific layers. This function wraps the Python plot_vae_architecture function from the ciss_vae
package.

Usage

plot_vae_architecture(
model,
title = NULL,
color_shared = "skyblue",
color_unshared = "lightcoral",
color_latent = "gold",
color_input = "lightgreen",
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color_output = "lightgreen",
figsize = c(16, 8),
save_path = NULL,
dpi = 300,
return_plot = FALSE,
display_plot = TRUE

)

Arguments

model A trained CISSVAE model object (Python object)

title Title of the plot. If NULL, no title is displayed. Default NULL.

color_shared Color for shared hidden layers. Default "skyblue".

color_unshared Color for unshared (cluster-specific) hidden layers. Default "lightcoral".

color_latent Color for latent layer. Default "gold".

color_input Color for input layer. Default "lightgreen".

color_output Color for output layer. Default "lightgreen".

figsize Size of the matplotlib figure as c(width, height). Default c(16, 8).

save_path Optional path to save the plot as PNG. If NULL, plot is displayed. Default
NULL.

dpi Resolution for saved PNG file. Default 300.

return_plot Logical; if TRUE, returns the plot as an R object using reticulate. Default
FALSE.

display_plot Logical; if TRUE, displays the plot. Set to FALSE when only saving. Default
TRUE.

Value

If return_plot is TRUE, returns a Python matplotlib figure object that can be further manipulated.
Otherwise returns NULL invisibly.

Tips

• If you get a TCL or TK error, run: reticulate::py_run_string("import matplotlib;
matplotlib.use('Agg')") to change the matplotlib backend to use ’Agg’ instead.

Examples

## Requires a working Python environment via reticulate
## Examples are wrapped in try() to avoid failures on CRAN check systems

try({
# Train a model first
result <- run_cissvae(my_data, return_model = TRUE)

# Basic plot
plot_vae_architecture(result$model)
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# Save plot to file
plot_vae_architecture(

model = result$model,
title = "CISS-VAE Architecture",
save_path = "vae_architecture.png",
dpi = 300

)

# Return plot object for further manipulation
fig <- plot_vae_architecture(

model = result$model,
return_plot = TRUE,
display_plot = FALSE

)
})

run_cissvae Run the CISS-VAE pipeline for missing data imputation

Description

This function wraps the Python run_cissvae function from the ciss_vae package, providing a
complete pipeline for missing data imputation using a Cluster-Informed Shared and Specific Vari-
ational Autoencoder (CISS-VAE). The function handles data preprocessing, model training, and
returns imputed data along with optional model artifacts.

The CISS-VAE architecture uses cluster information to learn both shared and cluster-specific rep-
resentations, enabling more accurate imputation by leveraging patterns within and across different
data subgroups.

Usage

run_cissvae(
data,
index_col = NULL,
val_proportion = 0.1,
replacement_value = 0,
columns_ignore = NULL,
imputable_matrix = NULL,
binary_feature_mask = NULL,
print_dataset = TRUE,
clusters = NULL,
n_clusters = NULL,
seed = 42,
missingness_proportion_matrix = NULL,
scale_features = FALSE,
k_neighbors = 15L,
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leiden_resolution = 0.5,
leiden_objective = "CPM",
hidden_dims = c(150, 120, 60),
latent_dim = 15,
layer_order_enc = c("unshared", "unshared", "unshared"),
layer_order_dec = c("shared", "shared", "shared"),
latent_shared = FALSE,
output_shared = FALSE,
batch_size = 4000,
epochs = 500,
initial_lr = 0.01,
decay_factor = 0.999,
weight_decay = 0.001,
beta = 0.001,
device = NULL,
max_loops = 100,
patience = 2,
epochs_per_loop = NULL,
initial_lr_refit = NULL,
decay_factor_refit = NULL,
beta_refit = NULL,
verbose = FALSE,
return_model = TRUE,
return_clusters = FALSE,
return_silhouettes = FALSE,
return_history = FALSE,
return_dataset = FALSE,
return_validation_dataset = FALSE,
debug = FALSE

)

Arguments

data A data.frame or matrix (samples × features) containing the data to impute. May
contain NA values which will be imputed.

index_col Character. Name of column in data to treat as sample identifier. This column
will be removed before training and re-attached to results. Default NULL.

val_proportion Numeric. Fraction of non-missing entries to hold out for validation during train-
ing. Must be between 0 and 1. Default 0.1.

replacement_value

Numeric. Fill value for masked entries during training. Default 0.0.

columns_ignore Character or integer vector. Columns to exclude from validation set. Can specify
by name or index. Default NULL.

imputable_matrix

Logical matrix indicating entries allowed to be imputed.
binary_feature_mask

Logical vector marking which columns are binary.
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print_dataset Logical. If TRUE, prints dataset summary information during processing. Default
TRUE.

clusters Optional vector or single-column data.frame of precomputed cluster labels for
samples. If NULL, clustering will be performed automatically. Default NULL.

n_clusters Integer. Number of clusters for KMeans clustering when clusters is NULL.
Number of clusters for KMeans clustering when ’clusters’ is NULL. If NULL,
will use Leiden for clustering. Default NULL.

seed Integer. Random seed for reproducible results. Default 42.
missingness_proportion_matrix

Optional pre-computed missingness proportion matrix for biomarker-based clus-
tering. If provided, clustering will be based on these proportions. Default NULL.

scale_features Logical. Whether to scale features when using missingness proportion matrix
clustering. Default FALSE.

k_neighbors Integer. Number of nearest neighbors for Leiden clustering. Defaults to 15.
leiden_resolution

Float. Resolution parameter for Leiden clustering. Defaults to 0.5.
leiden_objective

Character. Objective function for Leiden clustering. One of ("CPM", "RB",
"Modularity")

hidden_dims Integer vector. Sizes of hidden layers in encoder/decoder. Length determines
number of hidden layers. Default c(150, 120, 60).

latent_dim Integer. Dimension of latent space representation. Default 15.
layer_order_enc

Character vector. Sharing pattern for encoder layers. Each element should be
"shared" or "unshared". Length must match length(hidden_dims). Default
c("unshared", "unshared", "unshared").

layer_order_dec

Character vector. Sharing pattern for decoder layers. Each element should be
"shared" or "unshared". Length must match length(hidden_dims). Default
c("shared", "shared", "shared").

latent_shared Logical. Whether latent space weights are shared across clusters. Default FALSE.

output_shared Logical. Whether output layer weights are shared across clusters. Default
FALSE.

batch_size Integer. Mini-batch size for training. Larger values may improve training stabil-
ity but require more memory. Default 4000.

epochs Integer. Number of epochs for initial training phase. Default 500.

initial_lr Numeric. Initial learning rate for optimizer. Default 0.01.

decay_factor Numeric. Exponential decay factor for learning rate scheduling. Must be be-
tween 0 and 1. Default 0.999.

weight_decay Weight decay (L2 penalty) used in Adam optimizer.

beta Numeric. Weight for KL divergence term in VAE loss function. Controls regu-
larization strength. Default 0.001.

https://leidenalg.readthedocs.io/en/stable/intro.html
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device Character. Device specification for computation ("cpu" or "cuda"). If NULL,
automatically selects best available device. Default NULL.

max_loops Integer. Maximum number of impute-refit loops to perform. Default 100.

patience Integer. Early stopping patience for refit loops. Training stops if validation loss
doesn’t improve for this many consecutive loops. Default 2.

epochs_per_loop

Integer. Number of epochs per refit loop. If NULL, uses same value as epochs.
Default NULL.

initial_lr_refit

Numeric. Learning rate for refit loops. If NULL, uses same value as initial_lr.
Default NULL.

decay_factor_refit

Numeric. Decay factor for refit loops. If NULL, uses same value as decay_factor.
Default NULL.

beta_refit Numeric. KL weight for refit loops. If NULL, uses same value as beta. Default
NULL.

verbose Logical. If TRUE, prints detailed progress information during training. Default
FALSE.

return_model Logical. If TRUE, returns the trained Python VAE model object. Default TRUE.
return_clusters

Logical. If TRUE returns cluster vector
return_silhouettes

Logical. If TRUE, returns silhouette scores for cluster quality assessment. Default
FALSE.

return_history Logical. If TRUE, returns training history as a data.frame containing loss values
and metrics over epochs. Default FALSE.

return_dataset Logical. If TRUE, returns the ClusterDataset object used during training (contains
validation data, masks, etc.). Default FALSE.

return_validation_dataset

Logical. If TRUE returns validation dataset

debug Logical; if TRUE, additional metadata is returned for debugging.

Details

The CISS-VAE method works in two main phases:

1. Initial Training: The model is trained on the original data with validation holdout to learn
initial representations and imputation patterns.

2. Impute-Refit Loops: The model iteratively imputes missing values and retrains on the up-
dated dataset until convergence or maximum loops reached.

The architecture uses both shared and cluster-specific layers to capture:

• Shared patterns: Common relationships across all clusters

• Specific patterns: Unique relationships within each cluster
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Value

A list containing imputed data and optional additional outputs:

imputed_dataset data.frame of imputed data with same dimensions as input. Missing values are
filled with model predictions. If index_col was provided, it is re-attached as the first column.

model (if return_model=TRUE) Python CISSVAE model object. Can be used for further analysis
or predictions.

cluster_dataset (if return_dataset=TRUE) Python ClusterDataset object containing validation
data, masks, normalization parameters, and cluster labels. Can be used with performance_by_cluster()
and other analysis functions.

clusters (if return_clusters=TRUE) Returns vector of cluster assignments

silhouettes (if return_silhouettes=TRUE) Numeric silhouette score measuring cluster separa-
tion quality.

training_history (if return_history=TRUE) data.frame containing training history with columns
for epoch, losses, and validation metrics.

val_data (if return_validation_dataset=TRUE) data.frame containing values held aside for val-
idation.

val_imputed (if return_validation_dataset=TRUE) data.frame containing imputed values of
set held aside for validation.

Requirements

This function requires the Python ciss_vae package to be installed and accessible via reticulate.

Performance tips

• If Leiden clustering yields too many clusters, consider increasing k_neighbors or reducing
leiden_resolution.

• Use GPU computation when available for faster training on large datasets. Use check_devices()
to see what devices are available.

• Adjust batch_size based on available memory (larger is faster but uses more memory).

• Set verbose = TRUE to monitor training progress.

See Also

create_missingness_prop_matrix for creating missingness proportion matrices performance_by_cluster
for analyzing model performance using the returned dataset

Examples

## Requires a working Python environment via reticulate
## Examples are wrapped in try() to avoid failures on CRAN check systems
library(rCISSVAE)

data(df_missing)
data(clusters)
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try({
dat = run_cissvae(
data = df_missing,
index_col = "index",
val_proportion = 0.1, ## pass a vector for different proportions by cluster
columns_ignore = c("Age", "Salary", "ZipCode10001", "ZipCode20002", "ZipCode30003"),
clusters = clusters$clusters, ## we have precomputed cluster labels so we pass them here
epochs = 5,
return_silhouettes = FALSE,
return_history = TRUE, # Get detailed training history
verbose = FALSE,
return_model = TRUE, ## Allows for plotting model schematic
device = "cpu", # Explicit device selection
layer_order_enc = c("unshared", "shared", "unshared"),
layer_order_dec = c("shared", "unshared", "shared")

)
})
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