quickSentiment: A Fast and Flexible Pipeline for Text Classification

A high-level wrapper that simplifies text classification into three streamlined steps: preprocessing, model training, and prediction. It unifies the interface for multiple algorithms (including 'glmnet', 'ranger', and 'xgboost') and vectorization methods (Bag-of-Words, Term Frequency-Inverse Document Frequency (TF-IDF)), allowing users to go from raw text to a trained sentiment model in two function calls. The resulting model artifact automatically handles preprocessing for new datasets in the third step, ensuring consistent prediction pipelines.

Version: 0.1.0
Imports: quanteda, stopwords, foreach, stringr, textstem, glmnet, ranger, xgboost, caret, Matrix, magrittr, doParallel
Suggests: knitr, rmarkdown, spelling
Published: 2026-02-06
DOI: 10.32614/CRAN.package.quickSentiment (may not be active yet)
Author: Alabhya Dahal [aut, cre]
Maintainer: Alabhya Dahal <alabhya.dahal at gmail.com>
License: MIT + file LICENSE
NeedsCompilation: no
Language: en-US
Materials: README
CRAN checks: quickSentiment results

Documentation:

Reference manual: quickSentiment.html , quickSentiment.pdf
Vignettes: Introduction to quickSentiment (source, R code)

Downloads:

Package source: quickSentiment_0.1.0.tar.gz
Windows binaries: r-devel: not available, r-release: not available, r-oldrel: not available
macOS binaries: r-release (arm64): not available, r-oldrel (arm64): not available, r-release (x86_64): quickSentiment_0.1.0.tgz, r-oldrel (x86_64): not available

Linking:

Please use the canonical form https://CRAN.R-project.org/package=quickSentiment to link to this page.