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abs_error Absolute Error Function for Non-Conformity Scores

Description

Absolute Error Function for Non-Conformity Scores

Usage

abs_error(pred, truth)

Arguments
pred a numeric vector of predicted values
truth a numeric vector of true values
Value

a numeric vector of absolute errors

bcss_compute Function to compute the between-cluster sum of squares (BCSS) for a
set of clusters

Description

Function to compute the between-cluster sum of squares (BCSS) for a set of clusters

Usage

bcss_compute(ncs, class_vec, clusters, q = seq(@.1, 0.9, by = 0.1))

Arguments
ncs Vector of non-conformity scores
class_vec Vector of class labels
clusters List of clusters, where each element is a vector of class labels assigned to that
cluster
q Quantiles to use for the qECDFs, default is a sequence from 0.1 to 0.9 in steps
of 0.1
Value

A numeric value representing the BCSS for the clusters
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bindividual_alpha Bin-individual alpha function for conformal prediction

Description

Bin-individual alpha function for conformal prediction

Usage

bindividual_alpha(mings, alpha)

Arguments
mings Minimum quantiles
alpha alpha level
bin_chopper Bin chopper function for binned bootstrapping
Description

Bin chopper function for binned bootstrapping

Usage

bin_chopper(x, nbins, return_breaks = FALSE)

Arguments
X vector of values to be binned
nbins number of bins

return_breaks logical indicating whether to return the bin breaks
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bootstrap_inner Bootstrap function for bootstrapping the prediction intervals

Description

Bootstrap function for bootstrapping the prediction intervals

Usage

bootstrap_inner(
pred,
calib,
error,
nboot,
alpha,
dw_bootstrap = FALSE,
distance_function = NULL,
error_type = c("raw"”, "absolute"),
distance_weighted_bootstrap = FALSE,
distance_features_calib = NULL,
distance_features_pred = NULL,

distance_type = c("mahalanobis”, "euclidean"),
normalize_distance = c("minmax”, "sd”, "none"),
weight_function = gauss_kern

)

Arguments
pred predicted value
calib a vector of true values of the calibration partition. Used when weighted_bootstrap
is TRUE

error vector of errors.

nboot number of bootstrap samples

alpha confidence level

dw_bootstrap  logical. If TRUE, the bootstrap samples will be weighted according to the dis-
tance function

distance_function
a function that takes two numeric vectors and returns a numeric vector of dis-
tances. Default is NULL, in which case the absolute error will be used

error_type The type of error to use for the prediction intervals. Can be 'raw’ or ’absolute’.
If 'raw’, bootstrapping will be done on the raw prediction errors. If "absolute’,
bootstrapping will be done on the absolute prediction errors with random signs.
Default is ‘raw’

distance_weighted_bootstrap
logical. If TRUE, the bootstrap samples will be weighted according to the dis-
tance function
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distance_features_calib
a matrix of features for the calibration partition. Used when distance_weighted_bootstrap
is TRUE

distance_features_pred
a matrix of features for the prediction partition. Used when distance_weighted_bootstrap
is TRUE

distance_type The type of distance metric to use when computing distances between calibra-
tion and prediction points. Options are mahalanobis’ (default) and *euclidean’.

normalize_distance
Either "none", "minmax", or "sd". Indicates how to normalize the distances
when distance_weighted_bootstrap is TRUE

weight_function
a function to use for weighting the distances. Can be ’gaussian_kernel’, ’caucy_kernel’,
’logistic’, or ‘reciprocal_linear’. Default is ’gaussian_kernel’

Value

a numeric vector with the predicted value and the lower and upper bounds of the prediction interval

cauchy_kern Cauchy Kernel Function

Description

Cauchy Kernel Function

Usage

cauchy_kern(d)

Arguments

d a numeric vector of distances

Value

a numeric vector of Cauchy kernel values
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ch_index Function to compute the Calinski-Harabasz index for a set of clusters

Description

Function to compute the Calinski-Harabasz index for a set of clusters

Usage

ch_index(ncs, class_vec, clusters, q = seq(@0.1, 0.9, by = 0.1))

Arguments
ncs Vector of non-conformity scores
class_vec Vector of class labels
clusters List of clusters, where each element is a vector of class labels assigned to that
cluster
q Quantiles to use for the gECDFs, default is a sequence from 0.1 to 0.9 in steps
of 0.1
Value

A numeric value representing the Calinski-Harabasz index for the clusters

class_to_clusters Function to convert class vector to cluster vector based on calibrated
clusters

Description

Function to convert class vector to cluster vector based on calibrated clusters

Usage

class_to_clusters(class_vec, cluster_vec_calib)

Arguments

class_vec Vector of class labels
cluster_vec_calib
Vector of calibrated clusters

Value

A vector of cluster assignments, with attributes containing the clusters, method used, number of
clusters, Calibrated Clustering index, and coverage gaps
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clusterer Function to cluster non-conformity scores using either Kolmogorov-
Smirnov or K-means clustering
Description
Function to cluster non-conformity scores using either Kolmogorov-Smirnov or K-means clustering
Usage
clusterer(
ncs,
m,
class_vec,
maxit = 100,
method = c("ks"”, "kmeans"),
q = seq(0.1, 0.9, by = 0.1),
min_class_size = 10
)
Arguments
ncs Vector of non-conformity scores
m Number of clusters to form
class_vec Vector of class labels
maxit Maximum number of iterations for the clustering algorithm
method Clustering method to use, either ks’ for Kolmogorov-Smirnov or *’kmeans’ for
K-means clustering
q Quantiles to use for K-means clustering, default is a sequence from 0.1 to 0.9 in
steps of 0.1
min_class_size Minimum number of observations required in a class to be included in clustering
Value

A vector of cluster assignments, with attributes containing the clusters, coverage gaps, method used,
number of clusters, and Calibrated Clustering index
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contiguize_intervals  Contiguize non-contiguous intervals

Description

Contiguize non-contiguous intervals

Usage

contiguize_intervals(
pot_lower_bounds,
pot_upper_bounds,
empirical_lower_bounds,
empirical_upper_bounds,
return_all = FALSE

Arguments

pot_lower_bounds

Potential non-contiguous lower bounds
pot_upper_bounds

Potential non-contiguous upper bounds
empirical_lower_bounds

Observed lower bounds
empirical_upper_bounds

Observed upper bounds
return_all Return all intervals or just contiguous intervals
county_turnout U.S. county-level turnout and demographic context (MIT Election Lab

2018 Election Analysis Dataset + additions)

Description

A county-level dataset (U.S.) with voter turnout and sociodemographic covariates.

Usage

data(county_turnout)
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Format

A tibble with 3,107 rows and 22 variables:

state State name.
county County name.
fips County FIPS code.

turnout Observed turnout (proportion). Calculated as total votes cast divided by total population
(not voting-age population).

total_population Total county population.

nonwhite_pct Percent non-white population.

foreignborn_pct Percent foreign-born population.

female_pct Percent female population.

age29andunder_pct Percent of population aged 29 or under.
age65andolder_pct Percent of population aged 65 or older.
median_hh_inc Median household income.

clf_unemploy_pct Percent unemployed in the civilian labor force.
lesscollege_pct Percent with less than college education.

lesshs_pct Percent with less than high school education.

rural_pct Percent rural.

ruralurban_cc Rural-urban continuum code.

predicted_turnout LOO-CV random-forest prediction of ‘turnout‘ (see Details).
division U.S. Census division.

region U.S. Census region.

geo_group Additional coarse geographic grouping variable (added).
longitude County centroid longitude (added).

latitude County centroid latitude (added).

Details

The dataset is based on the MIT Election Lab "2018 Election Analysis dataset" file, with four
additions: (1) ‘turnout®, calculated as the number of votes cast divided by the total population, (2)
‘geo_group*, a coarse geographic grouping variable for the counties, (3) county centroid coordinates
(‘longitude’, ‘latitude‘), and (4) ‘predicted_turnout‘. The variable ‘predicted_turnout® is generated
using leave-one-out cross-validation (LOO-CV). For each county a random forest model is fit on
the remaining counties with ‘turnout® as the outcome and all available *non-geographic* covariates
as predictors. The fitted model is then used to predict turnout for the held-out county. Geographic
features are excluded from the predictor set to avoid leaking spatial information into the prediction
target. Concretely, identifiers and geographic variables (e.g., ‘state‘, ‘county‘, ‘fips‘, ‘division‘,

3

‘region‘, ‘geo_group°, ‘longitude’, ‘latitude‘) are excluded from the predictor set.

Below is example code (using ‘foreach*) to reproduce ‘predicted_turnout*. This is computationally
expensive for LOO-CV; parallel execution is recommended.
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library(dplyr) library(ranger) library(foreach) library(pintervals)
dat <- county_turnout # replace with your object name

# Choose predictors: all numeric covariates except turnout + geographic/id vars dat2 <- dat |>
select(-c(state, county, fips, division, region, geo_group, longitude, latitude))

set.seed(101010) # The meaning of life in binary

pred_loo <- foreach(.i = seq_len(nrow(dat)), .final = unlist)

train <- dat2[-.i, , drop = FALSE] test <- dat2[ .i, , drop = FALSE]
fit <- ranger( formula = turnout ~ ., data = train )

predict(fit, data = test)$predictions[[1]]

}

dat <- dat |> mutate(predicted_turnout = pred_loo)

Source

The base covariates originate from the MEDSL "2018 election context" file: https://github.
com/MEDSL/2018-elections-unoffical/blob/master/election-context-2018.md. The vari-
ables ‘geo_group‘, ‘longitude’, ‘latitude‘, and ‘predicted_turnout‘ are additions.

coverage_gap_finder Function to find the coverage gap for a set of clusters

Description

Function to find the coverage gap for a set of clusters

Usage

coverage_gap_finder(ncs, class_vec, cluster)

Arguments
ncs Vector of non-conformity scores
class_vec Vector of class labels
cluster Vector of cluster labels

Value

A numeric value representing the maximum coverage gap between the clusters


https://github.com/MEDSL/2018-elections-unoffical/blob/master/election-context-2018.md
https://github.com/MEDSL/2018-elections-unoffical/blob/master/election-context-2018.md
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Dm_finder Function to find the minimum distance between a class and a set of
clusters

Description

Function to find the minimum distance between a class and a set of clusters

Usage
Dm_finder(
ncs,
class_vec,
class,
clusters,
return = c("min", "which.min”, "vec")
)
Arguments
ncs Vector of non-conformity scores
class_vec Vector of class labels
class Class label to compare against the clusters
clusters List of clusters
return Character string indicating what to return. Options are min’ for the minimum
distance, which.min’ for the index of the cluster with the minimum distance, or
’vec’ for a vector of distances to each cluster.
Value

A numeric value or vector depending on the value of the ‘return‘ parameter. If ‘return‘ is min’,
returns the minimum distance. If ‘return‘ is *which.min’, returns the index of the cluster with the
minimum distance. If ‘return® is *vec’, returns a vector of distances to each cluster.

dm_to_prob Function to convert distance measure to probability

Description

Function to convert distance measure to probability

Usage
dm_to_prob(dm, dms)
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Arguments

dm Distance measure

dms Vector of distance measures for all clusters
Value

A numeric value representing the probability of the distance measure relative to the sum of all
distance measures

elections Election-year democracy indicators from V-Dem (1946-2024)

Description

A sample of election years from the V-Dem dataset covering 2,680 country-years between 1946 and
2024. Includes a range of democracy indices and related variables measured during years in which
national elections were held.

Usage

elections

Format

## “elections ” A tibble with 2,680 rows and 21 variables:

country_name Country name

year Election year

v2x_polyarchy Electoral democracy index
v2x_libdem Liberal democracy index
v2x_partipdem Participatory democracy index
v2x_delibdem Deliberative democracy index
v2x_egaldem Egalitarian democracy index
v2xel_frefair Free and fair elections index
v2x_frassoc_thick Freedom of association index
v2x_elecoff Elected officials index

v2eltrnout Voter turnout (V-Dem)
v2x_accountability Accountability index
v2xps_party Party system institutionalization
v2x_civlib Civil liberties index

v2x_corr Control of corruption index

v2x_rule Rule of law index
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v2x_neopat Neo-patrimonial rule index

v2x_suffr Suffrage index

turnout Turnout percentage (external source)

hog_lost Factor indicating if head of government lost election
hog_lost_num Numeric version of hog_lost

Source

Data derived from the Varieties of Democracy (V-Dem) dataset, version 15, filtered to election years
between 1946 and 2024. <https://www.v-dem.net/data/the-v-dem-dataset/>

flatten_cp_bin_intervals
Flatten binned conformal prediction intervals to contiguous intervals

Description

Flatten binned conformal prediction intervals to contiguous intervals

Usage

flatten_cp_bin_intervals(lst, contiguize = FALSE)

Arguments
1st list of binned conformal prediction intervals
contiguize logical indicating whether to contiguize the intervals
gauss_kern Gaussian Kernel Function
Description

Gaussian Kernel Function

Usage

gauss_kern(d)

Arguments

d a numeric vector of distances

Value

a numeric vector of Gaussian kernel values
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grid_finder

Grid search for lower and upper bounds of continuous conformal pre-
diction intervals

Description

Grid search for lower and upper bounds of continuous conformal prediction intervals

Usage

grid_finder(

y_min,
y_max,
ncs,

ncs_type,

y_hat,
alpha,

min_step = NULL,

grid_size = NULL,
calib = NULL,
coefs = NULL,

distance_weighted_cp = FALSE,
distance_features_calib = NULL,
distance_features_pred = NULL,

distance_type = c("mahalanobis”, "euclidean"),
normalize_distance = c("minmax”, "sd”, "none"),
weight_function = gauss_kern
)
Arguments
y_min minimum value to search
y_max maximum value to search
ncs vector of non-conformity scores
ncs_type String indicating the non-conformity score function to use
y_hat vector of predicted values
alpha confidence level
min_step The minimum step size for the grid search
grid_size Alternative to min_step, the number of points to use in the grid search between
the lower and upper bound
calib a tibble with the predicted values and the true values of the calibration partition.
Used when weighted_cp is TRUE. Default is NULL
coefs a numeric vector of coefficients for the heterogeneous error model. Must be of

length 2, where the first element is the intercept and the second element is the
slope. Used when ncs_type is "heterogeneous_error’. Default is NULL
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grid_inner

distance_weighted_cp
logical. If TRUE, the non-conformity scores will be weighted according to the
distance function

distance_features_calib
amatrix of features for the calibration partition. Used when distance_weighted_cp
is TRUE

distance_features_pred
a matrix of features for the prediction partition. Used when distance_weighted_cp
is TRUE

distance_type The type of distance metric to use when computing distances between calibra-
tion and prediction points. Options are mahalanobis’ (default) and *euclidean’.
normalize_distance
Either "none", "minmax", or "sd". Indicates how to normalize the distances
when distance_weighted_cp is TRUE
weight_function
a function to use for weighting the distances. Can be ’gaussian_kernel’, ’caucy_kernel’,
’logistic’, or ‘reciprocal_linear’. Default is ’gaussian_kernel’

Value

a tibble with the predicted values and the lower and upper bounds of the prediction intervals

grid_inner Inner function for grid search

Description

Inner function for grid search

Usage

grid_inner(
hyp_ncs,
y_hat,
ncs,
pos_vals,
alpha,
ncs_type,
distance_weighted_cp,
distance_features_calib,
distance_features_pred,
distance_type,
normalize_distance,
weight_function
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Arguments
hyp_ncs vector of hypothetical non-conformity scores
y_hat predicted value
ncs vector of non-conformity scores
pos_vals vector of possible values for the lower and upper bounds of the prediction inter-
val
alpha confidence level
ncs_type type of non-conformity score

distance_weighted_cp
logical. If TRUE, the non-conformity scores will be weighted according to the
distance function

distance_features_calib
a matrix of features for the calibration partition. Used when distance_weighted_cp
is TRUE

distance_features_pred

a matrix of features for the prediction partition. Used when distance_weighted_cp
is TRUE

distance_type The type of distance metric to use when computing distances between calibra-
tion and prediction points. Options are mahalanobis’ and *euclidean’.

normalize_distance
Either 'minmax’, ’sd’, or 'none’. Indicates how to normalize the distances when
distance_weighted_cp is TRUE

weight_function
a function to use for weighting the distances. Can be ’gaussian_kernel’, ’caucy_kernel’,
’logistic’, or ‘reciprocal_linear’. Default is ’gaussian_kernel’

Value

a numeric vector with the predicted value and the lower and upper bounds of the prediction interval

heterogeneous_error Heterogeneous Error Function for Non-Conformity Scores

Description

Heterogeneous Error Function for Non-Conformity Scores

Usage

heterogeneous_error(pred, truth, coefs)
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interval_coverage

Arguments
pred a numeric vector of predicted values
truth a numeric vector of true values
coef's a numeric vector of coefficients for the heterogeneous error model. Must be of
length 2, where the first element is the intercept and the second element is the
slope.
interval_coverage Empirical coverage of prediction intervals
Description

Calculates the mean empirical coverage rate of prediction intervals, i.e., the proportion of true values
that fall within their corresponding prediction intervals.

Usage

interval_coverage(

truth,

lower_bound
upper_bound
intervals =

Arguments

truth
lower_bound
upper_bound

intervals

return_vector

na.rm

NULL,
NULL,

NULL,
return_vector
na.rm = FALSE

= FALSE,

A numeric vector of true outcome values.
A numeric vector of lower bounds of the prediction intervals.
A numeric vector of upper bounds of the prediction intervals.

Alternative input for prediction intervals as a list-column, where each element
is a list with components ’lower_bound’ and "upper_bound’. Useful with non-
contigous intervals, for instance constructed using the bin conditional conformal
method wich can yield multiple intervals per prediction. See details.

Logical, whether to return the coverage vector (TRUE) or the mean coverage
(FALSE). Default is FALSE.

Logical, whether to remove NA values before calculation. Default is FALSE.
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Details

If the ‘intervals‘ argument is provided, it should be a list-column where each element is a list
containing 'lower_bound’ and ’upper_bound’ vectors. This allows for the calculation of coverage
for non-contiguous intervals, such as those produced by certain conformal prediction methods such
as the bin conditional conformal method. In this case, coverage is determined by checking if the
true value falls within any of the specified intervals for each observation. If the user has some
observations with contiguous intervals and others with non-contiguous intervals, they can provide
both ‘lower_bound* and ‘upper_bound‘ vectors along with the ‘intervals* list-column. The function
will compute coverage accordingly for each observation based on the available information.

Value

A single numeric value between 0 and 1 representing the proportion of covered values.

Examples

library(dplyr)
library(tibble)

# Simulate example data

set.seed(123)

x1 <= runif(1000)

x2 <= runif(1000)

y <= rnorm(1000, mean = x1 + x2, sd = 1)
df <- tibble(x1, x2, y)

# Split into training, calibration, and test sets
df_train <- df %>% slice(1:500)

df_cal <- df %>% slice(501:750)

df_test <- df %>% slice(751:1000)

# Fit a model on the log-scale
mod <- 1Im(y ~ x1 + x2, data = df_train)

# Generate predictions
pred_cal <- predict(mod, newdata = df_cal)
pred_test <- predict(mod, newdata = df_test)

# Estimate normal prediction intervals from calibration data
intervals <- pinterval_parametric(

pred = pred_test,

calib = pred_cal,

calib_truth = df_cal$y,

dist = "norm",

alpha = 0.1
)

# Calculate empirical coverage

interval_coverage(truth = df_test$y,
lower_bound = intervals$lower_bound,
upper_bound = intervals$upper_bound)
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interval_miscoverage Empirical miscoverage of prediction intervals

Description
Calculates the empirical miscoverage rate of prediction intervals, i.e., the difference between pro-
portion of true values that fall within their corresponding prediction intervals and the nominal cov-
erage rate (1 - alpha).

Usage

interval_miscoverage(truth, lower_bound, upper_bound, alpha, na.rm = FALSE)

Arguments

truth A numeric vector of true outcome values.

lower_bound A numeric vector of lower bounds of the prediction intervals.

upper_bound A numeric vector of upper bounds of the prediction intervals.

alpha The nominal miscoverage rate (e.g., 0.1 for 90% prediction intervals).

na.rm Logical, whether to remove NA values before calculation. Default is FALSE.
Value

A single numeric value between -1 and 1 representing the empirical miscoverage rate. A value close
to 0 indicates that the prediction intervals are well-calibrated.

Examples

library(dplyr)
library(tibble)

# Simulate example data

set.seed(123)

x1 <= runif(1000)

x2 <= runif(1000)

y <= rnorm(1000, mean = x1 + x2, sd = 1)
df <- tibble(x1, x2, y)

# Split into training, calibration, and test sets
df_train <- df %>% slice(1:500)

df_cal <- df %>% slice(501:750)

df_test <- df %>% slice(751:1000)

# Fit a model on the log-scale
mod <- lm(y ~ x1 + x2, data = df_train)
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# Generate predictions
pred_cal <- predict(mod, newdata = df_cal)
pred_test <- predict(mod, newdata = df_test)

# Estimate normal prediction intervals from calibration data
intervals <- pinterval_parametric(

pred = pred_test,

calib = pred_cal,

calib_truth = df_cal$y,

dist = "norm",

alpha = 0.1
)

# Calculate empirical coverage

interval_miscoverage(truth = df_test$y,
lower_bound = intervals$lower_bound,
upper_bound = intervals$upper_bound,
alpha = 0.1)

interval_score Mean interval score (MIS) for prediction intervals

Description

Computes the mean interval score, a proper scoring rule that penalizes both the width of prediction
intervals and any lack of coverage. Lower values indicate better interval quality.

Usage

interval_score(
truth,
lower_bound = NULL,
upper_bound = NULL,
intervals = NULL,
return_vector = FALSE,

alpha,
na.rm = FALSE
)
Arguments
truth A numeric vector of true outcome values.
lower_bound A numeric vector of lower bounds of the prediction intervals.
upper_bound A numeric vector of upper bounds of the prediction intervals.
intervals Alternative input for prediction intervals as a list-column, where each element

is a list with components "lower_bound’ and "upper_bound’. Useful with non-
contigous intervals, for instance constructed using the bin conditional conformal
method wich can yield multiple intervals per prediction. See details.
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return_vector Logical, whether to return the interval score vector (TRUE) or the mean interval
score (FALSE). Default is FALSE.
alpha The nominal miscoverage rate (e.g., 0.1 for 90% prediction intervals).
na.rm Logical, whether to remove NA values before calculation. Default is FALSE.
Details

The mean interval score (MIS) is defined as:
2 2

where \( 'y \) is the true value, and \( [Ib, ub] ) is the prediction interval.

If the ‘intervals‘ argument is provided, it should be a list-column where each element is a list
containing 'lower_bound’ and ’upper_bound’ vectors. This allows for the calculation of coverage
for non-contiguous intervals, such as those produced by certain conformal prediction methods such
as the bin conditional conformal method. In this case, coverage is determined by checking if the
true value falls within any of the specified intervals for each observation. If the user has some
observations with contiguous intervals and others with non-contiguous intervals, they can provide
both ‘lower_bound‘ and ‘upper_bound‘ vectors along with the ‘intervals‘ list-column. The function
will compute coverage accordingly for each observation based on the available information.

Value

A single numeric value representing the mean interval score across all observations.

Examples

library(dplyr)
library(tibble)

# Simulate example data

set.seed(123)

x1 <= runif(1000)

x2 <- runif(1000)

y <= rnorm(1000, mean = x1 + x2, sd = 1)
df <- tibble(x1, x2, y)

# Split into training, calibration, and test sets
df_train <- df %>% slice(1:500)

df_cal <- df %>% slice(501:750)

df_test <- df %>% slice(751:1000)

# Fit a model on the log-scale
mod <- 1Im(y ~ x1 + x2, data = df_train)

# Generate predictions
pred_cal <- predict(mod, newdata = df_cal)

pred_test <- predict(mod, newdata = df_test)

# Estimate normal prediction intervals from calibration data
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intervals <- pinterval_parametric(
pred = pred_test,
calib = pred_cal,
calib_truth = df_cal$y,
dist = "norm”,
alpha = 0.1
)

# Calculate empirical coverage
interval_score(truth = df_test$y,

lower_bound = intervals$lower_bound,
upper_bound = intervals$upper_bound,

alpha = 0.1)
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interval_width Mean width of prediction intervals

Description

Computes the mean width of prediction intervals, defined as the average difference between upper

and lower bounds.

Usage

interval_width(
lower_bound = NULL,
upper_bound = NULL,
intervals = NULL,
return_vector = FALSE,
na.rm = FALSE

)
Arguments
lower_bound A numeric vector of lower bounds of the prediction intervals.
upper_bound A numeric vector of upper bounds of the prediction intervals.
intervals Alternative input for prediction intervals as a list-column, where each element

is a list with components "lower_bound’ and "upper_bound’. Useful with non-
contigous intervals, for instance constructed using the bin conditional conformal

method wich can yield multiple intervals per prediction. See details.

return_vector Logical, whether to return the width vector (TRUE) or the mean width (FALSE).

Default is FALSE.

na.rm Logical, whether to remove NA values before calculation. Default is FALSE.
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Details

The mean width is calculated as:

1 n
Mean Width = — b; — lb;
ean Wi - Z(u )

i=1

where \( ub_i\) and \( 1b_i \) are the upper and lower bounds of the prediction interval for observa-
tion \(i\), and \( n\) is the total number of observations.

If the ‘intervals‘ argument is provided, it should be a list-column where each element is a list
containing 'lower_bound’ and ’upper_bound’ vectors. This allows for the calculation of coverage
for non-contiguous intervals, such as those produced by certain conformal prediction methods such
as the bin conditional conformal method. In this case, coverage is determined by checking if the
true value falls within any of the specified intervals for each observation. If the user has some
observations with contiguous intervals and others with non-contiguous intervals, they can provide
both ‘lower_bound* and ‘upper_bound‘ vectors along with the ‘intervals* list-column. The function
will compute coverage accordingly for each observation based on the available information.

Value

A single numeric value representing the mean width of the prediction intervals.

Examples

library(dplyr)
library(tibble)

# Simulate example data

set.seed(123)

x1 <= runif(1000)

x2 <= runif(1000)

y <= rnorm(1000, mean = x1 + x2, sd = 1)
df <- tibble(x1, x2, y)

# Split into training, calibration, and test sets
df_train <- df %>% slice(1:500)

df_cal <- df %>% slice(501:750)

df_test <- df %>% slice(751:1000)

# Fit a model on the log-scale
mod <- lm(y ~ x1 + x2, data = df_train)

# Generate predictions
pred_cal <- predict(mod, newdata = df_cal)
pred_test <- predict(mod, newdata = df_test)

# Estimate normal prediction intervals from calibration data
intervals <- pinterval_parametric(

pred = pred_test,

calib = pred_cal,

calib_truth = df_cal$y,
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dist = "norm”,
alpha = 0.1
)

# Calculate empirical coverage
interval_width(lower_bound = intervals$lower_bound,
upper_bound = intervals$upper_bound)

kmeans_cluster_qecdf  Function to perform K-means clustering on quantile empirical cumu-
lative distribution functions (qECDFs) of non-conformity scores

Description

Function to perform K-means clustering on quantile empirical cumulative distribution functions
(qECDFs) of non-conformity scores

Usage

kmeans_cluster_qgecdf(ncs, class_vec, q = seq(@.1, 0.9, by = 0.1), m)

Arguments
ncs Vector of non-conformity scores
class_vec Vector of class labels
q Quantiles to use for the gECDFs, default is a sequence from 0.1 to 0.9 in steps
of 0.1
m Number of clusters to form
Value

A list of clusters, where each element is a vector of class labels assigned to that cluster

ks_cluster Function to perform Kolmogorov-Smirnov clustering on non-
conformity scores

Description

Function to perform Kolmogorov-Smirnov clustering on non-conformity scores

Usage

ks_cluster(ncs, class_vec, m, maxit = 100, nrep = 10)
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Arguments

ncs
class_vec
m

maxit

nrep

Value

ks_cluster_assignment_step

Vector of non-conformity scores

Vector of class labels

Number of clusters to form

Maximum number of iterations for the clustering algorithm

Number of repetitions for the clustering algorithm

A vector of cluster assignments, with attributes containing the clusters, coverage gaps, method used,
number of clusters, and Calibrated Clustering index

ks_cluster_assignment_step

Function to assign classes to clusters based on Kolmogorov-Smirnov
clustering

Description

Function to assign classes to clusters based on Kolmogorov-Smirnov clustering

Usage

ks_cluster_assignment_step(ncs, class_vec, class_labels, clusters, m)

Arguments

ncs
class_vec
class_labels
clusters

m

Value

Vector of non-conformity scores
Vector of class labels

Vector of unique class labels
List of clusters

Number of clusters

A list of clusters, where each element is a vector of class labels assigned to that cluster
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ks_cluster_init_step  Function to initialize clusters for Kolmogorov-Smirnov clustering

Description

Function to initialize clusters for Kolmogorov-Smirnov clustering

Usage

ks_cluster_init_step(ncs, class_vec, m)

Arguments
ncs Vector of non-conformity scores
class_vec Vector of class labels
m Number of clusters to form
logistic_kern Logistic Kernel Function
Description

Logistic Kernel Function

Usage

logistic_kern(d)

Arguments

d a numeric vector of distances

Value

a numeric vector of logistic kernel values
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ncs_compute

ming_to_alpha Helper for minimum quantile to alpha function

Description

Helper for minimum quantile to alpha function

Usage

ming_to_alpha(ming, alpha)

Arguments
ming minimum quantile
alpha alpha level
ncs_compute Non-Conformity Score Computation Function
Description

Non-Conformity Score Computation Function

Usage

ncs_compute(type, pred, truth, coefs = NULL)

Arguments
type Type of non-conformity score to compute. Options include ’absolute_error’,
‘raw_error’, ‘relative_error’, 'relative_error2’, and ’heterogeneous_error’.
pred a numeric vector of predicted values
truth a numeric vector of true values
coef's a numeric vector of coefficients for the heterogeneous error model. Must be of

length 2, where the first element is the intercept and the second element is the

slope.
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optimize_clusters Function to optimize clusters based on the Calinski-Harabasz index

Description

Function to optimize clusters based on the Calinski-Harabasz index

Usage
optimize_clusters(
ncs,
class_vec,
method = c("ks", "kmeans"),
min_m = 2,
max_m = NULL,
ms = NULL,
maxit = 100,
q = seq(@.1, 0.9, by = 0.1)
)
Arguments
ncs Vector of non-conformity scores
class_vec Vector of class labels
method Clustering method to use, either ’ks’ for Kolmogorov-Smirnov or ’kmeans’ for
K-means clustering
min_m Minimum number of clusters to consider
max_m Maximum number of clusters to consider. If NULL, defaults to the number of
unique classes minus one
ms Vector of specific numbers of clusters to consider. If NULL, defaults to a se-
quence from min_m to max_m
maxit Maximum number of iterations for the clustering algorithm
q Quantiles to use for K-means clustering, default is a sequence from 0.1 to 0.9 in
steps of 0.1
Value

A vector of cluster assignments, with attributes containing the clusters, coverage gaps, method used,
number of clusters, and the Calinski-Harabasz index
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pinterval_bccp Bin-conditional conformal prediction intervals for continuous predic-
tions

Description

This function calculates bin-conditional conformal prediction intervals with a confidence level of 1-
alpha for a vector of (continuous) predicted values using inductive conformal prediction on a bin-by-
bin basis. The intervals are computed using a calibration set with predicted and true values and their
associated bins. The function returns a tibble containing the predicted values along with the lower
and upper bounds of the prediction intervals. Bin-conditional conformal prediction intervals are
useful when the prediction error is not constant across the range of predicted values and ensures that
the coverage is (approximately) correct for each bin under the assumption that the non-conformity
scores are exchangeable within each bin.

Usage
pinterval_bccp(
pred,
calib = NULL,

calib_truth = NULL,
calib_bins = NULL,
breaks = NULL,

right = TRUE,

contiguize = FALSE,

alpha = 0.1,

ncs_type = c("absolute_error”, "relative_error"”, "za_relative_error”,
"heterogeneous_error”, "raw_error"),

grid_size = 10000,

resolution = NULL,

distance_weighted_cp = FALSE,

distance_features_calib = NULL,

distance_features_pred = NULL,

normalize_distance = TRUE,

distance_type = c("mahalanobis”, "euclidean"),

weight_function = c("gaussian_kernel”, "caucy_kernel”, "logistic", "reciprocal_linear")

)

Arguments
pred Vector of predicted values
calib A numeric vector of predicted values in the calibration partition, or a 2 column
tibble or matrix with the first column being the predicted values and the second
column being the truth values. If calib is a numeric vector, calib_truth must be
provided.
calib_truth A numeric vector of true values in the calibration partition. Only required if

calib is a numeric vector
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calib_bins

breaks

right

contiguize

alpha

ncs_type

grid_size

resolution
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A vector of bin identifiers for the calibration set. Not used if breaks are provided.

A vector of break points for the bins to manually define the bins. If NULL,
lower and upper bounds of the bins are calculated as the minimum and maximum
values of each bin in the calibration set. Must be provided if calib_bins is not
provided, either as a vector or as the last column of a calib tibble.

Logical, if TRUE the bins are right-closed (a,b] and if FALSE the bins are left-
closed ‘[ a,b)‘. Only used if breaks are provided.

Logical indicating whether to contiguize the intervals. TRUE will consider all
bins for each prediction using the lower and upper endpoints as interval limits
to avoid non-contiguous intervals. FALSE will allows for non-contiguous inter-
vals. TRUE guarantees at least appropriate coverage in each bin, but may suffer
from over-coverage in certain bins. FALSE will have appropriate coverage in
each bin but may have non-contiguous intervals. Default is FALSE.

The confidence level for the prediction intervals. Must be a single numeric value
between 0 and 1

A string specifying the type of nonconformity score to use. Available options
are:

* "absolute_error”: |y — 9|

* "relative_error”: |y — §|/9

¢ "zero_adjusted_relative_error”: |y —g|/(§ + 1)

* "heterogeneous_error”: |y — §| /oy absolute error divided by a measure
of heteroskedasticity, computed as the predicted value from a linear model
of the absolute error on the predicted values

* "raw_error”: the signed error y — ¢
The default is "absolute_error”.

The number of points to use in the grid search between the lower and upper
bound. Default is 10,000. A larger grid size increases the resolution of the
prediction intervals but also increases computation time.

Alternatively to grid_size. The minimum step size between grid points. Useful
if the a specific resolution is desired. Default is NULL.

distance_weighted_cp

Logical. If TRUE, weighted conformal prediction is performed where the non-
conformity scores are weighted based on the distance between calibration and
prediction points in feature space. Default is FALSE. See details for more infor-
mation.

distance_features_calib

A matrix, data frame, or numeric vector of features from which to compute dis-
tances when distance_weighted_cp = TRUE. This should contain the feature
values for the calibration set. Must have the same number of rows as the cali-
bration set. Can be the predicted values themselves, or any other features which
give a meaningful distance measure.

distance_features_pred

A matrix, data frame, or numeric vector of feature values for the prediction
set. Must be the same features as specified in distance_features_calib. Re-
quired if distance_weighted_cp = TRUE.
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normalize_distance
Either 'minmax’, ’sd’, or 'none’. Indicates if and how to normalize the distances
when distance_weighted_cp is TRUE. Normalization helps ensure that distances
are on a comparable scale across features. Default is *none’.

distance_type The type of distance metric to use when computing distances between calibra-
tion and prediction points. Options are mahalanobis’ (default) and *euclidean’.

weight_function

A character string specifying the weighting kernel to use for distance-weighted
conformal prediction. Options are:

« "gaussian_kernel”: w(d) = e~

e "caucy_kernel”: w(d) = 1/(1 + d?)
 "logistic”: w(d) =1//(1+e%)

* "reciprocal_linear”: w(d) =1/(1+d)

The default is "gaussian_kernel”. Distances are computed as the Euclidean
distance between the calibration and prediction feature vectors.

Details

‘pinterval_bccep()‘ extends [pinterval_conformal()] to the bin-conditional setting, where prediction
intervals are calibrated separately within user-specified bins. It is particularly useful when predic-
tion error varies across the range of predicted values, as it enables locally valid coverage by ensuring
that the coverage level 1 — « holds within each bin—assuming exchangeability of non-conformity
scores within bins.

For a detailed description of non-conformity scores, distance weighting and the general inductive
conformal framework, see [pinterval_conformal()].

For ‘pinterval_bccp()‘, the calibration set must include predicted values, true values, and corre-
sponding bin identifiers or breaks for the bins. These can be provided either as separate vectors
(‘calib®, ‘calib_truth‘, and ‘calib_bins‘ or ‘breaks°).

Bins endpoints can be defined manually via the ‘breaks‘ argument or inferred from the calibration
data. If ‘contiguize = TRUE®, the function ensures the resulting prediction intervals are contiguous
across bins, potentially increasing coverage beyond the nominal level in some bins. If ‘contiguize =
FALSE", the function may produce non-contiguous intervals, which are more efficient but may be
harder to interpret.

Value

A tibble with the predicted values and the lower and upper bounds of the prediction intervals. If
contiguize = FALSE, the intervals may consist of multiple disjoint segments; in this case, the tibble
will contain a list-column with all segments for each prediction.

See Also

pinterval_conformal
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Examples

# Generate example data

library(dplyr)

library(tibble)

x1 <= runif(1000)

x2 <= runif(1000)

y <= rlnorm(1000, meanlog = x1 + x2, sdlog = 0.5)

# Create bins based on quantiles

bin <- cut(y, breaks = quantile(y, probs = seq(0, 1, 1/4)),
include.lowest = TRUE, labels =FALSE)

df <- tibble(x1, x2, y, bin)

df_train <- df %>% slice(1:500)

df_cal <- df %>% slice(501:750)

df_test <- df %>% slice(751:1000)

# Fit a model to the training data
mod <- 1m(log(y) ~ x1 + x2, data=df_train)

# Generate predictions on the original y scale for the calibration data
calib <- exp(predict(mod, newdata=df_cal))

calib_truth <- df_cal$y

calib_bins <- df_cal$bin

# Generate predictions for the test data
pred_test <- exp(predict(mod, newdata=df_test))

# Calculate bin-conditional conformal prediction intervals
pinterval_bccp(pred = pred_test,

calib = calib,

calib_truth = calib_truth,

calib_bins = calib_bins,

alpha = 0.1)

pinterval_bootstrap Bootstrap prediction intervals

Description

This function computes bootstrapped prediction intervals with a confidence level of 1-alpha for a
vector of (continuous) predicted values using bootstrapped prediction errors. The prediction errors
to bootstrap from are computed using either a calibration set with predicted and true values or a set
of pre-computed prediction errors from a calibration dataset or other data which the model was not
trained on (e.g. OOB errors from a model using bagging). The function returns a tibble containing
the predicted values along with the lower and upper bounds of the prediction intervals.
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Usage
pinterval_bootstrap(
pred,
calib,
calib_truth = NULL,
error_type = c("raw”, "absolute"),
alpha = 0.1,

n_bootstraps = 1000,
distance_weighted_bootstrap = FALSE,
distance_features_calib = NULL,
distance_features_pred = NULL,

distance_type = c("mahalanobis”, "euclidean"),
normalize_distance = TRUE,
weight_function = c("gaussian_kernel"”, "caucy_kernel”, "logistic", "reciprocal_linear")
)
Arguments
pred Vector of predicted values
calib A numeric vector of predicted values in the calibration partition, or a 2 column
tibble or matrix with the first column being the predicted values and the second
column being the truth values. If calib is a numeric vector, calib_truth must be
provided.
calib_truth A numeric vector of true values in the calibration partition. Only required if
calib is a numeric vector
error_type The type of error to use for the prediction intervals. Can be ‘raw’ or ’absolute’.
If 'raw’, bootstrapping will be done on the raw prediction errors. If "absolute’,
bootstrapping will be done on the absolute prediction errors with random signs.
Default is 'raw’
alpha The confidence level for the prediction intervals. Must be a single numeric value

between 0 and 1

n_bootstraps The number of bootstraps to perform. Default is 1000
distance_weighted_bootstrap
Logical. If TRUE, the function will use distance-weighted bootstrapping. De-
fault is FALSE. If TRUE, the probability of selecting a prediction error is weighted
by the distance to the predicted value using the specified distance function and
weight function. If FALSE, standard bootstrapping is performed.
distance_features_calib
A matrix, data frame, or numeric vector of features from which to compute dis-
tances when distance_weighted_cp = TRUE. This should contain the feature
values for the calibration set. Must have the same number of rows as the cali-
bration set. Can be the predicted values themselves, or any other features which
give a meaningful distance measure.
distance_features_pred
A matrix, data frame, or numeric vector of feature values for the prediction
set. Must be the same features as specified in distance_features_calib. Re-
quired if distance_weighted_cp = TRUE.
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distance_type The type of distance metric to use when computing distances between calibra-
tion and prediction points. Options are 'mahalanobis’ (default) and ’euclidean’.

normalize_distance
Either 'minmax’, ’sd’, or 'none’. Indicates if and how to normalize the distances
when distance_weighted_cp is TRUE. Normalization helps ensure that distances
are on a comparable scale across features. Default is *none’.

weight_function
A character string specifying the weighting kernel to use for distance-weighted
conformal prediction. Options are:

. 2
* "gaussian_kernel”: w(d) = e~¢

e "caucy_kernel”: w(d) = 1/(1 + d?)
» "logistic”: w(d) =1//(1+ e4)
* "reciprocal_linear”: w(d) =1/(1+d)

The default is "gaussian_kernel”. Distances are computed as the Euclidean
distance between the calibration and prediction feature vectors.

Details

This function estimates prediction intervals using bootstrapped prediction errors derived from a
calibration set. It supports both standard and distance-weighted bootstrapping. The calibration set
must consist of predicted values and corresponding true values, either provided as separate vectors
or as a two-column tibble or matrix. Alternatively, users may provide a vector of precomputed
prediction errors if model predictions and truths are already processed.

Two types of error can be used for bootstrapping: - ‘"raw"‘: bootstrapping is performed on the
raw signed prediction errors (truth - prediction), allowing for asymmetric prediction intervals. -

on ne,

absolute"‘: bootstrapping is done on the absolute errors, and random signs are applied when
constructing intervals. This results in (approximately) symmetric intervals around the prediction.

Distance-weighted bootstrapping (‘distance_weighted_bootstrap = TRUE®) can be used to give
more weight to calibration errors closer to each test prediction. Distances are computed between
the feature matrices or vectors supplied via ‘distance_features_calib‘ and ‘distance_features_pred".
These distances are then transformed into weights using the selected kernel in ‘weight_function®,
with rapidly decaying kernels (e.g., Gaussian) emphasizing strong locality and slower decays (e.g.,
reciprocal or Cauchy) providing smoother influence. Distances can be geographic coordinates, pre-
dicted values, or any other relevant features that capture similarity in the context of the prediction
task. The distance metric is specified via ‘distance_type‘, with options for Mahalanobis or Eu-
clidean distance. The default is Mahalanobis distance, which accounts for correlations between
features. Normalization of distances can be applied using the ‘normalize_distance* parameter. Nor-
malization is primarily useful for euclidean distances to ensure that features on different scales do
not disproportionately influence the distance calculations.

The number of bootstrap samples is controlled via the ‘n_bootstraps‘ parameter. For computational
efficiency, this can be reduced at the cost of interval precision.

Value

A tibble with the predicted values, lower bounds, and upper bounds of the prediction intervals
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Examples

library(dplyr)
library(tibble)

# Simulate some data

set.seed(42)

x1 <= runif(1000)

X2 <- runif(1000)

y <= rlnorm(1000, meanlog = x1 + x2, sdlog = 0.4)
df <- tibble(x1, x2, y)

# Split into train/calibration/test
df_train <- df[1:500, ]

df_cal <- df[501:750, 1]

df_test <- df[751:1000, ]

# Fit a log-linear model
model <- Im(log(y) ~ x1 + x2, data = df_train)

# Generate predictions
pred_cal <- exp(predict(model, newdata = df_cal))
pred_test <- exp(predict(model, newdata = df_test))

# Compute bootstrap prediction intervals
intervals <- pinterval_bootstrap(

pred = pred_test,

calib = pred_cal,

calib_truth = df_cal$y,

n n

error_type = "raw”,
alpha = 0.1,
n_bootstraps = 1000
)
pinterval_ccp Clustered conformal prediction intervals for continuous predictions
Description

This function computes conformal prediction intervals with a confidence level of 1 — « by first
grouping Mondrian classes into data-driven clusters based on the distribution of their nonconformity
scores. The resulting clusters are used as strata for computing class-conditional (Mondrian-style)
conformal prediction intervals. This approach improves local validity and statistical efficiency when
there are many small or similar classes with overlapping prediction behavior. The coverage level
1 — « is approximate within each cluster, assuming exchangeability of nonconformity scores within
clusters.

The method supports additional features such as prediction calibration, distance-weighted confor-
mal scores, and clustering optimization via internal validity measures (e.g., Calinski-Harabasz index
or minimum cluster size heuristics).
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Usage

pinterval_ccp(
pred,
pred_class = NULL,
calib = NULL,
calib_truth = NULL,
calib_class = NULL,
lower_bound = NULL,
upper_bound = NULL,
alpha = 0.1,
ncs_type = c("absolute_error”, "relative_error"”, "za_relative_error”,

"heterogeneous_error”, "raw_error"),

grid_size = 10000,

resolution = NULL,

n_clusters = NULL,

cluster_method = c("kmeans”, "ks"),

cluster_train_fraction = 1,

optimize_n_clusters = TRUE,

optimize_n_clusters_method = c("calinhara”, "min_cluster_size"),
min_cluster_size = 150,

min_n_clusters = 2,

max_n_clusters = NULL,

distance_weighted_cp = FALSE,

distance_features_calib = NULL,

distance_features_pred = NULL,

distance_type = c("mahalanobis”, "euclidean"),
normalize_distance = TRUE,

weight_function = c("gaussian_kernel”, "caucy_kernel”, "logistic"”, "reciprocal_linear")

)

Arguments

pred Vector of predicted values

pred_class A vector of class identifiers for the predicted values. This is used to group the
predictions by class for Mondrian conformal prediction.

calib A numeric vector of predicted values in the calibration partition, or a 2 column
tibble or matrix with the first column being the predicted values and the second
column being the truth values. If calib is a numeric vector, calib_truth must be
provided.

calib_truth A numeric vector of true values in the calibration partition. Only required if
calib is a numeric vector

calib_class A vector of class identifiers for the calibration set.

lower_bound Optional minimum value for the prediction intervals. If not provided, the mini-

mum (true) value of the calibration partition will be used. Primarily useful when
the possible outcome values are outside the range of values observed in the cali-
bration set. If not provided, the minimum (true) value of the calibration partition
will be used.
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upper_bound Optional maximum value for the prediction intervals. If not provided, the max-
imum (true) value of the calibration partition will be used. Primarily useful
when the possible outcome values are outside the range of values observed in
the calibration set. If not provided, the maximum (true) value of the calibration
partition will be used.

alpha The confidence level for the prediction intervals. Must be a single numeric value
between 0 and 1

ncs_type A string specifying the type of nonconformity score to use. Available options
are:

* "absolute_error”: |y — g|

* "relative_error”: |y — 4|/y

* "zero_adjusted_relative_error”: |y — §|/(§ + 1)

* "heterogeneous_error”: |y — ¢|/o; absolute error divided by a measure
of heteroskedasticity, computed as the predicted value from a linear model
of the absolute error on the predicted values

* "raw_error”: the signed error y — ¢

The default is "absolute_error”.

grid_size The number of points to use in the grid search between the lower and upper
bound. Default is 10,000. A larger grid size increases the resolution of the
prediction intervals but also increases computation time.

resolution Alternatively to grid_size. The minimum step size between grid points. Useful
if the a specific resolution is desired. Default is NULL.

n_clusters Number of clusters to use when combining Mondrian classes. Required if
optimize_n_clusters = FALSE.

cluster_method Clustering method used to group Mondrian classes. Options are "kmeans” or
"ks" (Kolmogorov-Smirnov). Default is "kmeans"”.

cluster_train_fraction
Fraction of the calibration data used to estimate nonconformity scores and com-
pute clustering. Default is 1 (use all).

optimize_n_clusters
Logical. If TRUE, the number of clusters is chosen automatically based on inter-
nal clustering criteria.

optimize_n_clusters_method
Method used for cluster optimization. One of "calinhara” (Calinski-Harabasz
index) or "min_cluster_size". Default is "calinhara”.

min_cluster_size
Minimum number of calibration points per cluster. Used only when optimize_n_clusters_method
= "min_cluster_size".

min_n_clusters Minimum number of clusters to consider when optimizing.

max_n_clusters Maximum number of clusters to consider. If NULL, the upper limit is set to the
number of unique Mondrian classes minus 1.

distance_weighted_cp

Logical. If TRUE, weighted conformal prediction is performed where the non-
conformity scores are weighted based on the distance between calibration and
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prediction points in feature space. Default is FALSE. See details for more infor-
mation.
distance_features_calib

A matrix, data frame, or numeric vector of features from which to compute dis-
tances when distance_weighted_cp = TRUE. This should contain the feature
values for the calibration set. Must have the same number of rows as the cali-
bration set. Can be the predicted values themselves, or any other features which
give a meaningful distance measure.

distance_features_pred

A matrix, data frame, or numeric vector of feature values for the prediction
set. Must be the same features as specified in distance_features_calib. Re-
quired if distance_weighted_cp = TRUE.

distance_type The type of distance metric to use when computing distances between calibra-
tion and prediction points. Options are mahalanobis’ (default) and ’euclidean’.

normalize_distance
Either *'minmax’, ’sd’, or 'none’. Indicates if and how to normalize the distances
when distance_weighted_cp is TRUE. Normalization helps ensure that distances
are on a comparable scale across features. Default is 'none’.

weight_function
A character string specifying the weighting kernel to use for distance-weighted
conformal prediction. Options are:

. 2
* "gaussian_kernel”: w(d) = e~

s "caucy_kernel”: w(d) = 1/(1 + d?)
 "logistic”: w(d) =1//(1+e%)
* "reciprocal_linear”: w(d) =1/(1+d)

The default is "gaussian_kernel”. Distances are computed as the Euclidean
distance between the calibration and prediction feature vectors.

Details

‘pinterval_ccp()* builds on [pinterval_mondrian()] by introducing a clustered conformal prediction
framework. Instead of requiring a separate calibration distribution for every Mondrian class, which
may lead to unstable or noisy intervals when there are many small groups, the method groups similar
Mondrian classes into clusters with similar nonconformity score distributions. Classes with similar
prediction-error behavior are assigned to the same cluster. Each resulting cluster is then treated as
a stratum for standard inductive conformal prediction.

Users may specify the number of clusters directly using the ‘n_clusters® argument or optimize the
number of clusters using the Calinski-Harabasz index or minimum cluster size heuristics.

Clustering can be computed using all calibration data or a subsample defined by ‘cluster_train_fraction®.

Clustering is based on either k-means or Kolmogorov-Smirnov distance between nonconformity
score distributions of the Mondrian classes, selected via the ‘cluster_method* argument.

For a detailed description of non-conformity scores, distance-weighting, and the general conformal
prediction framework, see [pinterval_conformal()], and for a description of Mondrian conformal
prediction, see [pinterval_mondrian()].
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Value

A tibble with predicted values, lower and upper prediction interval bounds, class labels, and as-
signed cluster labels. Attributes include clustering diagnostics (e.g., cluster assignments, coverage
gaps, internal validity scores).

See Also

pinterval_conformal, pinterval_mondrian

Examples

library(dplyr)
library(tibble)

# Simulate data with 6 Mondrian classes forming 3 natural clusters
set.seed(123)

x1 <= runif(1000)

x2 <= runif(1000)

class_raw <- sample(1:6, size = 1000, replace = TRUE)

# Construct 3 latent clusters: (1,2), (3,4), (5,6)
mu <- ifelse(class_raw %in% c(1, 2), 1 + x1 + x2,
ifelse(class_raw %in% c(3, 4), 2 + x1 + x2,
3+ x1 + x2))

sds <- ifelse(class_raw %in% c(1, 2), 0.5,
ifelse(class_raw %in% c(3, 4), 0.3,
0.4))

y <= rlnorm(1000, meanlog = mu, sdlog = sds)
df <- tibble(x1, x2, class = factor(class_raw), y)

# Split into training, calibration, and test sets
df_train <- df %>% slice(1:500)

df_cal <- df %>% slice(501:750)

df_test <- df %>% slice(751:1000)

# Fit model (on log-scale)
mod <- 1Im(log(y) ~ x1 + x2, data = df_train)

# Generate predictions
pred_cal <- exp(predict(mod, newdata = df_cal))
pred_test <- exp(predict(mod, newdata = df_test))

# Apply clustered conformal prediction
intervals <- pinterval_ccp(

pred = pred_test,

pred_class = df_test$class,

calib = pred_cal,

calib_truth = df_cal$y,
calib_class = df_cal$class,
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alpha = 0.1,

ncs_type = "absolute_error”,
optimize_n_clusters = TRUE,
optimize_n_clusters_method = "calinhara”,

min_n_clusters = 2,
max_n_clusters = 4

)
# View clustered prediction intervals
head(intervals)
pinterval_conformal Conformal Prediction Intervals of Continuous Values
Description

This function calculates conformal prediction intervals with a confidence level of 1-alpha for a
vector of (continuous) predicted values using inductive conformal prediction. The intervals are
computed using either a calibration set with predicted and true values or a set of pre-computed non-
conformity scores from the calibration set. The function returns a tibble containing the predicted
values along with the lower and upper bounds of the prediction intervals.

Usage

pinterval_conformal(
pred,
calib = NULL,
calib_truth = NULL,
alpha = 0.1,
ncs_type = c("absolute_error”, "relative_error"”, "za_relative_error”,
"heterogeneous_error”, "raw_error"),
lower_bound = NULL,
upper_bound = NULL,
grid_size = 10000,
resolution = NULL,
distance_weighted_cp = FALSE,
distance_features_calib = NULL,
distance_features_pred = NULL,
distance_type = c("mahalanobis”, "euclidean"),
normalize_distance = "none”,
weight_function = c("gaussian_kernel”, "caucy_kernel”, "logistic", "reciprocal_linear")

)

Arguments

pred Vector of predicted values
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calib

calib_truth

alpha

ncs_type

lower_bound

upper_bound

grid_size

resolution

pinterval_conformal

A numeric vector of predicted values in the calibration partition, or a 2 column
tibble or matrix with the first column being the predicted values and the second
column being the truth values. If calib is a numeric vector, calib_truth must be
provided.

A numeric vector of true values in the calibration partition. Only required if
calib is a numeric vector

The confidence level for the prediction intervals. Must be a single numeric value
between 0 and 1

A string specifying the type of nonconformity score to use. Available options
are:

* "absolute_error”: |y — {|
e "relative_error”: |y — 4|/7
 "zero_adjusted_relative_error”: |y — g|/(§ + 1)

* "heterogeneous_error”: |y — ¢|/oy absolute error divided by a measure
of heteroskedasticity, computed as the predicted value from a linear model
of the absolute error on the predicted values

* "raw_error”: the signed error y — ¢
The default is "absolute_error”.

Optional minimum value for the prediction intervals. If not provided, the mini-
mum (true) value of the calibration partition will be used. Primarily useful when
the possible outcome values are outside the range of values observed in the cali-
bration set. If not provided, the minimum (true) value of the calibration partition
will be used.

Optional maximum value for the prediction intervals. If not provided, the max-
imum (true) value of the calibration partition will be used. Primarily useful
when the possible outcome values are outside the range of values observed in
the calibration set. If not provided, the maximum (true) value of the calibration
partition will be used.

The number of points to use in the grid search between the lower and upper
bound. Default is 10,000. A larger grid size increases the resolution of the
prediction intervals but also increases computation time.

Alternatively to grid_size. The minimum step size between grid points. Useful
if the a specific resolution is desired. Default is NULL.

distance_weighted_cp

Logical. If TRUE, weighted conformal prediction is performed where the non-
conformity scores are weighted based on the distance between calibration and
prediction points in feature space. Default is FALSE. See details for more infor-
mation.

distance_features_calib

A matrix, data frame, or numeric vector of features from which to compute dis-
tances when distance_weighted_cp = TRUE. This should contain the feature
values for the calibration set. Must have the same number of rows as the cali-
bration set. Can be the predicted values themselves, or any other features which
give a meaningful distance measure.
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distance_features_pred
A matrix, data frame, or numeric vector of feature values for the prediction
set. Must be the same features as specified in distance_features_calib. Re-
quired if distance_weighted_cp = TRUE.

distance_type The type of distance metric to use when computing distances between calibra-
tion and prediction points. Options are mahalanobis’ (default) and *euclidean’.
normalize_distance
Either 'minmax’, ’sd’, or 'none’. Indicates if and how to normalize the distances
when distance_weighted_cp is TRUE. Normalization helps ensure that distances
are on a comparable scale across features. Default is 'none’.

weight_function
A character string specifying the weighting kernel to use for distance-weighted
conformal prediction. Options are:

. 2
* "gaussian_kernel”: w(d) = e~ ¢

e "caucy_kernel”: w(d) = 1/(1 + d?)
» "logistic”: w(d) =1//(1+ e4)
* "reciprocal_linear”: w(d) = 1/(1+d)

The default is "gaussian_kernel”. Distances are computed as the Euclidean
distance between the calibration and prediction feature vectors.

Details

This function computes prediction intervals using inductive conformal prediction. The calibration
set must include predicted values and true values. These can be provided either as separate vectors
(‘calib‘and ‘calib_truth) or as a two-column tibble or matrix where the first column contains the
predicted values and the second column contains the true values. If ‘calib‘ is a numeric vector,
‘calib_truth‘ must also be provided.

Non-conformity scores are calculated using the specified ‘ncs_type‘, which determines how the
prediction error is measured. Available options include:

n ne,

absolute_error"‘: the absolute difference between predicted and true values. - “"relative_error" *:
the absolute error divided by the true value. - ‘"za_relative_error"‘: zero-adjusted relative error,
which replaces small or zero true values with a small constant to avoid division by zero. - ‘"hetero-

ne,

geneous_error'"‘: absolute error scaled by a linear model of prediction error magnitude as a function

ne,

of the predicted value. - “"raw_error"*: the signed difference between predicted and true values.

These options provide flexibility to adapt to different patterns of prediction error across the outcome
space.

To determine the prediction intervals, the function performs a grid search over a specified range
of possible outcome values, identifying intervals that satisfy the desired confidence level of 1 — .
The user can define the range via the ‘lower_bound‘ and ‘upper_bound‘ parameters. If these are
not supplied, the function defaults to using the minimum and maximum of the true values in the
calibration data.

The resolution of the grid search can be controlled by either the ‘resolution‘ argument, which sets
the minimum step size, or the ‘grid_size‘ argument, which sets the number of grid points. For wide
prediction spaces, the grid search may be computationally intensive. In such cases, increasing the
‘resolution® or reducing the ‘grid_size* may improve performance.
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When ‘distance_weighted_cp = TRUE®, the function applies distance-weighted conformal predic-
tion, which adjusts the influence of calibration non-conformity scores based on how similar each
calibration point is to the target prediction. This approach preserves the distribution-free nature of
conformal prediction while allowing intervals to adapt to local patterns, often yielding tighter and
more responsive prediction sets in heterogeneous data environments.

Distances are computed between the feature matrices or vectors supplied via ‘distance_features_calib*
and ‘distance_features_pred‘. These distances are then transformed into weights using the selected
kernel in ‘weight_function®, with rapidly decaying kernels (e.g., Gaussian) emphasizing strong lo-
cality and slower decays (e.g., reciprocal or Cauchy) providing smoother influence. Distances can
be geographic coordinates, predicted values, or any other relevant features that capture similarity
in the context of the prediction task. The distance metric is specified via ‘distance_type*, with op-
tions for Mahalanobis or Euclidean distance. The default is Mahalanobis distance, which accounts
for correlations between features. Normalization of distances can be applied using the ‘normal-
ize_distance‘ parameter. Normalization is primarily useful for euclidean distances to ensure that
features on different scales do not disproportionately influence the distance calculations.

Value

A tibble with the predicted values and the lower and upper bounds of the prediction intervals.

Examples

# Generate example data

library(dplyr)

library(tibble)

x1 <= runif(1000)

X2 <- runif(1000)

y <= rlnorm(1000, meanlog = x1 + x2, sdlog = 0.5)
df <- tibble(x1, x2, y)

df_train <- df %>% slice(1:500)

df_cal <- df %>% slice(501:750)

df_test <- df %>% slice(751:1000)

# Fit a model to the training data
mod <- 1Im(log(y) ~ x1 + x2, data=df_train)

# Generate predictions on the original y scale for the calibration data
calib_pred <- exp(predict(mod, newdata=df_cal))
calib_truth <- df_cal$y

# Generate predictions for the test data
pred_test <- exp(predict(mod, newdata=df_test))

# Calculate prediction intervals using conformal prediction.
pinterval_conformal (pred_test,

calib = calib_pred,

calib_truth = calib_truth,

alpha = 0.1,

lower_bound = 0)
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pinterval_mondrian Mondrian conformal prediction intervals for continuous predictions

Description

This function calculates Mondrian conformal prediction intervals with a confidence level of 1-alpha
for a vector of (continuous) predicted values using inductive conformal prediction on a Mondrian
class-by-class basis. The intervals are computed using a calibration set with predicted and true val-
ues and their associated classes. The function returns a tibble containing the predicted values along
with the lower and upper bounds of the prediction intervals. Mondrian conformal prediction inter-
vals are useful when the prediction error is not constant across groups or classes, as they allow for
locally valid coverage by ensuring that the coverage level 1 — « holds within each class—assuming
exchangeability of non-conformity scores within classes.

Usage

pinterval_mondrian(
pred,
pred_class = NULL,
calib = NULL,
calib_truth = NULL,
calib_class = NULL,

alpha = 0.1,
ncs_type = c("absolute_error”, "relative_error"”, "za_relative_error”,
"heterogeneous_error”, "raw_error"),

lower_bound = NULL,

upper_bound = NULL,

grid_size = 10000,

resolution = NULL,

distance_weighted_cp = FALSE,

distance_features_calib = NULL,

distance_features_pred = NULL,

distance_type = c("mahalanobis”, "euclidean"),

normalize_distance = TRUE,

weight_function = c("gaussian_kernel”, "caucy_kernel”, "logistic"”, "reciprocal_linear")

)

Arguments
pred Vector of predicted values
pred_class A vector of class identifiers for the predicted values. This is used to group the
predictions by class for Mondrian conformal prediction.
calib A numeric vector of predicted values in the calibration partition, or a 2 column

tibble or matrix with the first column being the predicted values and the second
column being the truth values. If calib is a numeric vector, calib_truth must be
provided.
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calib_truth

calib_class

alpha

ncs_type

lower_bound

upper_bound

grid_size

resolution

pinterval_mondrian

A numeric vector of true values in the calibration partition. Only required if
calib is a numeric vector

A vector of class identifiers for the calibration set.

The confidence level for the prediction intervals. Must be a single numeric value
between 0 and 1

A string specifying the type of nonconformity score to use. Available options
are:

» "absolute_error”: |y — gl

* "relative_error”: |y — §|/9

* "zero_adjusted_relative_error”: |y — g|/(§ + 1)

* "heterogeneous_error”: |y — §| /oy absolute error divided by a measure

of heteroskedasticity, computed as the predicted value from a linear model
of the absolute error on the predicted values

* "raw_error": the signed error y — ¢
The default is "absolute_error”.

Optional minimum value for the prediction intervals. If not provided, the mini-
mum (true) value of the calibration partition will be used. Primarily useful when
the possible outcome values are outside the range of values observed in the cali-
bration set. If not provided, the minimum (true) value of the calibration partition
will be used.

Optional maximum value for the prediction intervals. If not provided, the max-
imum (true) value of the calibration partition will be used. Primarily useful
when the possible outcome values are outside the range of values observed in
the calibration set. If not provided, the maximum (true) value of the calibration
partition will be used.

The number of points to use in the grid search between the lower and upper
bound. Default is 10,000. A larger grid size increases the resolution of the
prediction intervals but also increases computation time.

Alternatively to grid_size. The minimum step size between grid points. Useful
if the a specific resolution is desired. Default is NULL.

distance_weighted_cp

Logical. If TRUE, weighted conformal prediction is performed where the non-
conformity scores are weighted based on the distance between calibration and
prediction points in feature space. Default is FALSE. See details for more infor-
mation.

distance_features_calib

A matrix, data frame, or numeric vector of features from which to compute dis-
tances when distance_weighted_cp = TRUE. This should contain the feature
values for the calibration set. Must have the same number of rows as the cali-
bration set. Can be the predicted values themselves, or any other features which
give a meaningful distance measure.

distance_features_pred

A matrix, data frame, or numeric vector of feature values for the prediction
set. Must be the same features as specified in distance_features_calib. Re-
quired if distance_weighted_cp = TRUE.
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distance_type The type of distance metric to use when computing distances between calibra-
tion and prediction points. Options are mahalanobis’ (default) and ’euclidean’.
normalize_distance
Either 'minmax’, ’sd’, or 'none’. Indicates if and how to normalize the distances
when distance_weighted_cp is TRUE. Normalization helps ensure that distances
are on a comparable scale across features. Default is 'none’.
weight_function
A character string specifying the weighting kernel to use for distance-weighted
conformal prediction. Options are:

« "gaussian_kernel”: w(d) = e=%

e "caucy_kernel”: w(d) = 1/(1 + d?)
 "logistic”: w(d) =1//(1+e%)
* "reciprocal_linear”: w(d) =1/(1+d)

The default is "gaussian_kernel”. Distances are computed as the Euclidean
distance between the calibration and prediction feature vectors.

Details

‘pinterval_mondrian()* extends [pinterval_conformal()] to the Mondrian setting, where prediction
intervals are calibrated separately within user-defined groups (often called "Mondrian categories").
Instead of pooling all calibration residuals into a single reference distribution, the method constructs
a separate non-conformity distribution for each subgroup defined by a grouping variable (e.g., re-
gion, regime type, or income category). This allows the intervals to adapt to systematic differences
in error magnitude or variance across groups and targets coverage conditional on group member-
ship. It is especially useful when prediction error varies systematically across known categories,
allowing for class-conditional validity by ensuring that the prediction intervals attain the desired
coverage level 1 — a within each class—under the assumption of exchangeability within classes.

Conceptually, the underlying inductive conformal machinery is the same as in [pinterval_conformal()],
but applied within groups rather than globally. For a detailed description of non-conformity scores,
distance-weighting, and the general conformal prediction framework, see [pinterval_conformal()].

For ‘pinterval_mondrian()°, the calibration set must include predicted values, true values, and cor-
responding class labels. These can be supplied as separate vectors (‘calib‘, ‘calib_truth®, and
‘calib_class‘) or as a single three-column matrix or tibble.

Value

A tibble with predicted values, lower and upper prediction interval bounds, and class labels.

See Also

pinterval_conformal

Examples

# Generate synthetic data
library(dplyr)
library(tibble)
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set.seed(123)

x1 <= runif(1000)

X2 <- runif(1000)

group <- sample(c("A", "B", "C"), size = 1000, replace = TRUE)

mu <- ifelse(group == "A", 1 + x1 + x2,
ifelse(group == "B", 2 + x1 + x2,
3+ x1 + x2))

y <= rlnorm(1000, meanlog = mu, sdlog = 0.4)

df <- tibble(x1, x2, group, y)
df_train <- df %>% slice(1:500)
df_cal <- df %>% slice(501:750)
df_test <- df %>% slice(751:1000)

# Fit a model to the training data
mod <- 1lm(log(y) ~ x1 + x2, data = df_train)

# Generate predictions

calib <- exp(predict(mod, newdata = df_cal))
calib_truth <- df_cal$y

calib_class <- df_cal$group

pred_test <- exp(predict(mod, newdata = df_test))
pred_test_class <- df_test$group

# Apply Mondrian conformal prediction
pinterval_mondrian(pred = pred_test,
pred_class = pred_test_class,

calib = calib,

calib_truth = calib_truth,
calib_class = calib_class,

alpha = 0.1)

pinterval_parametric #’ Parametric prediction intervals for continuous predictions

Description

This function computes parametric prediction intervals at a confidence level of 1 — « for a vector
of continuous predictions. The intervals are based on a user-specified probability distribution and
associated parameters, either estimated from calibration data or supplied directly. Supported distri-
butions include common options like the normal, log-normal, gamma, beta, and negative binomial,
as well as any user-defined distribution with a quantile function. Prediction intervals are calculated
by evaluating the appropriate quantiles for each predicted value.

Usage

pinterval_parametric(
pred,
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calib = NULL,
calib_truth = NULL,
dist = c("norm”, "lnorm”, "exp”, "pois”, "nbinom", "gamma", "chisq”, "logis”, "beta"),
pars = list(),
alpha = 0.1
)
Arguments
pred Vector of predicted values
calib A numeric vector of predicted values in the calibration partition, or a 2 column
tibble or matrix with the first column being the predicted values and the second
column being the truth values. If calib is a numeric vector, calib_truth must be
provided.
calib_truth A numeric vector of true values in the calibration partition. Only required if
calib is a numeric vector
dist Distribution to use for the prediction intervals. Can be a character string match-
ing any available distribution in R or a function representing a distribution, e.g.
‘gnorm‘, ‘qgamma‘, or a user defined quantile function. Default options are
‘norm’, ’lnorm’,’ exp, "pois’, ‘nbinom’, ’chisq’, ’gamma’, ’logis’, and 'beta’ for
which parameters can be computed from the calibration set. If a custom function
is provided, parameters need to be provided in ‘pars°.
pars List of named parameters for the distribution for each prediction. Not needed if
calib is provided and the distribution is one of the default options. If a custom
distribution function is provided, this list should contain the parameters needed
for the quantile function, with names matching the corresponding arguments for
the parameter names of the distribution function. See details for more informa-
tion.
alpha The confidence level for the prediction intervals. Must be a single numeric value
between 0 and 1
Details
This function supports a wide range of distributions for constructing prediction intervals. Built-in
support is provided for the following distributions: ‘"norm"‘, “"lnorm"‘, ‘"exp"‘, ‘"pois"‘, ‘"nbi-
nom", “"chisq"‘, ‘"gamma"‘, ‘"logis"*, and ‘"beta"‘. For each of these, parameters can be automat-

ically estimated from a calibration set if not supplied directly via the ‘pars‘ argument.

The calibration set (‘calib‘ and ‘calib_truth) is used to estimate error dispersion or shape param-
eters. For example: - **Normal**: standard deviation of errors - **Log-normal**: standard de-
viation of log-errors - **Gamma**: dispersion via ‘glm‘ - **Negative binomial**: dispersion via
‘glm.nb()* - **Beta**: precision estimated from error variance

If ‘pars® is supplied, it should be a list of named arguments corresponding to the distribution’s
quantile function. Parameters may be scalars or vectors (one per prediction). When both ‘pars‘ and
‘calib‘ are provided, the values in ‘pars* are used.

Users may also specify a custom distribution by passing a quantile function directly (e.g., a function
with the signature ‘function(p, ...)‘) as the ‘dist* argument, in which case ‘pars‘ must be provided
explicitly.
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Value

A tibble with the predicted values and the lower and upper bounds of the prediction intervals
Examples

library(dplyr)

library(tibble)

# Simulate example data

set.seed(123)

x1 <= runif(1000)

x2 <= runif(1000)

y <- rlnorm(1000, meanlog = x1 + x2, sdlog = 0.5)
df <- tibble(x1, x2, y)

# Split into training, calibration, and test sets
df_train <- df %>% slice(1:500)

df_cal <- df %>% slice(501:750)

df_test <- df %>% slice(751:1000)

# Fit a model on the log-scale
mod <- 1Im(log(y) ~ x1 + x2, data = df_train)

# Generate predictions
pred_cal <- exp(predict(mod, newdata = df_cal))
pred_test <- exp(predict(mod, newdata = df_test))

# Estimate log-normal prediction intervals from calibration data
log_resid_sd <- sqgrt(mean((log(pred_cal) - log(df_cal$y))*2))
pinterval_parametric(

pred = pred_test,

dist = "lnorm”,

pars = list(meanlog = log(pred_test), sdlog = log_resid_sd)
)

# Alternatively, use calibration data directly to estimate parameters
pinterval_parametric(

pred = pred_test,

calib = pred_cal,

calib_truth = df_cal$y,

dist = "lnorm”

)

# Use the normal distribution with direct parameter input
norm_sd <- sqrt(mean((pred_cal - df_cal$y)*2))
pinterval_parametric(

pred = pred_test,

dist = "norm”,

pars = list(mean = pred_test, sd = norm_sd)

)

# Use the gamma distribution with parameters estimated from calibration data
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pinterval_parametric(
pred = pred_test,
calib = pred_cal,
calib_truth = df_cal$y,
dist = "gamma”

)
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raw_error Raw Error Function for Non-Conformity Scores

Description

Raw Error Function for Non-Conformity Scores

Usage

raw_error(pred, truth)

Arguments
pred a numeric vector of predicted values
truth a numeric vector of true values
Value

a numeric vector of raw errors

reciprocal_linear_kern
Reciprocal Linear Kernel Function

Description

Reciprocal Linear Kernel Function

Usage

reciprocal_linear_kern(d)

Arguments

d a numeric vector of distances

Value

a numeric vector of reciprocal linear kernel values
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rel_error Relative Error Function for Non-Conformity Scores by predicted Val-
ues

Description

Relative Error Function for Non-Conformity Scores by predicted Values

Usage

rel_error(pred, truth)

Arguments
pred a numeric vector of predicted values
truth a numeric vector of true values
Value

a numeric vector of relative errors

wcss_compute Function to compute the within-cluster sum of squares (WCSS) for a
set of clusters

Description

Function to compute the within-cluster sum of squares (WCSS) for a set of clusters

Usage

wcss_compute(ncs, class_vec, cluster, q = seq(@0.1, 0.9, by = 0.1))

Arguments
ncs Vector of non-conformity scores
class_vec Vector of class labels
cluster Vector of cluster labels
q Quantiles to use for the gECDFs, default is a sequence from 0.1 to 0.9 in steps
of 0.1
Value

A numeric value representing the WCSS for the cluster
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za_rel_error Zero-adjusted Relative Error Function for Non-Conformity Scores by
predicted Values with a small adjustment

Description
Zero-adjusted Relative Error Function for Non-Conformity Scores by predicted Values with a small
adjustment

Usage

za_rel_error(pred, truth)

Arguments
pred a numeric vector of predicted values
truth a numeric vector of true values
Value

a numeric vector of zero-adjusted relative errors
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