Package ‘logolink’

January 8, 2026

Title An Interface for Running 'NetL.ogo' Simulations
Version 1.0.0

Description An interface for 'NetLogo' <https://www.netlogo.org> that enables
programmatic setup and execution of simulations. Designed to facilitate
integrating 'NetLogo' models into reproducible workflows by creating and
running 'BehaviorSpace' experiments and retrieving their results.

License GPL (>=3)

URL https://danielvartan.github.io/logolink/,
https://github.com/danielvartan/logolink/

BugReports https://github.com/danielvartan/logolink/issues/
Depends R (>=4.4)

Imports checkmate (>=2.3.3), cli (>=3.6.5), dplyr (>=1.1.4), fs (>=
1.6.6), glue (>= 1.8.0), janitor (>= 2.2.1), magrittr (>=
2.0.4), purrr (>= 1.2.0), readr (>= 2.0.0), tidyr (>= 1.3.1),
stringr (>= 1.6.0), xml2 (>= 1.4.0)

Suggests bslib (>= 0.9.0), colorspace (>=2.1.2), covr (>= 3.6.5),
curl (>=7.0.0), ggplot2 (>=4.0.1), ggimage (>= 0.3.4), ggtext
(>=0.1.2), here (>= 1.0.2), httr2 (>= 1.2.1), knitr (>= 1.50),
lifecycle (>= 1.0.4), magick (>=2.9.0), quarto (>= 1.5.1),
ragg (>= 1.5.0), remotes (>= 2.5.0), rsvg (>= 2.7.0), scales
(>=1.4.0), spelling (>=2.3.2), tibble (>= 3.3.0), testthat
(>=3.3.0)

VignetteBuilder quarto
Config/testthat/edition 3
Encoding UTF-8
Language en-US
RoxygenNote 7.3.3
NeedsCompilation no

Author Daniel Vartanian [aut, cre, ccp, cph] (ORCID:
<https://orcid.org/0000-0001-7782-759X>)

1


https://www.netlogo.org
https://danielvartan.github.io/logolink/
https://github.com/danielvartan/logolink/
https://github.com/danielvartan/logolink/issues/
https://orcid.org/0000-0001-7782-759X

create_experiment

Maintainer Daniel Vartanian <danielvartan@proton.me>
Repository CRAN
Date/Publication 2026-01-08 15:10:14 UTC

Contents
Create_exXperiment . . . . . . . . v v v v it e e e e e e e e e e 2
find_netlogo_console . . . . . . . ... 9
find_netlogo_home . . . . . . . . ... 10
find_netlogo_version . . . . . . . . ... 11
get_netlogo_shape . . . . . . . . 12
INSPECt_EXPEIIMENt . . . . . . . v v v v e it e e e e e e e e e e e 13
parse_netlogo_color. . . . . .. L e e e 14
parse_netlogo_list . . . . . .. L. 15
read_exXperiment . . . . . . ... ..o e 17
TUN_EXPETIMENt . . . . . v v v v ettt e e e e e e e e e e e e e e e e 19

Index 24

create_experiment Create NetLogo BehaviorSpace experiment
Description

create_experiment() creates a NetLogo BehaviorSpace experiment XML file that can be used to
run headless experiments with the run_experiment() function.

For complete guidance on setting up and running experiments in NetL.ogo, please refer to the Be-
haviorSpace Guide.

Usage

create_experiment(

nn

name = "",
repetitions = 1,
sequential_run_order = TRUE,
run_metrics_every_step = FALSE,
time_limit = 1,

pre_experiment = NULL,

setup = "setup”,

go = "go",

post_run = NULL,
post_experiment = NULL,
exit_condition = NULL,
run_metrics_condition = NULL,
metrics = "count turtles”,
constants = NULL,


https://docs.netlogo.org/behaviorspace.html
https://en.wikipedia.org/wiki/XML
https://docs.netlogo.org/behaviorspace.html#creating-an-experiment-setup
https://docs.netlogo.org/behaviorspace.html#creating-an-experiment-setup

create_experjment 3

sub_experiments = NULL,

file = tempfile(pattern = "experiment-", fileext = ".xml")
)
Arguments
name (optional) A character string specifying the name of the experiment (default:
n Il).
repetitions (optional) An integer number specifying the number of times to run the experi-

ment (default: 1).

sequential_run_order
(optional) A logical flag indicating whether to run the experiments in sequen-
tial order (default: TRUE).

run_metrics_every_step
(optional) A logical flag indicating whether to record metrics at every step
(default: FALSE).

time_limit (optional) An integer number specifying the maximum number of steps to run
for each repetition. Set to @ or NULL to have no time limit (default: 1).

pre_experiment (optional) A character vector specifying the NetLogo command(s) to run be-
fore the experiment starts (default: NULL).

setup (optional) A character vector specifying the NetLogo command(s) to set up
the model (default: 'setup').
go (optional) A character vector specifying the NetLogo command(s) to run the

model (default: 'go").

post_run (optional) A character vector specifying the NetLogo command(s) to run after
each run (default: NULL).

post_experiment
(optional) A character vector specifying the NetLogo command(s) to run after
the experiment ends (default: NULL).

exit_condition (optional) A character vector specifying the NetLogo command that defines
the exit condition for the experiment (default: NULL).

run_metrics_condition
(optional) A character vector specifying the NetLogo command that defines
the condition to record metrics (default: NULL).

metrics A character vector specifying the NetLogo commands to record as metrics
(default: 'count turtles').
constants (optional) A named list specifying the parameters for the experiment. Each

element can be either a scalar, vector (for fixed/enumerated values), or a 1ist
with first, step, and last elements (for stepped/varying values). See the
Details and Examples sections to learn more (default: NULL).

sub_experiments
(optional) A 1ist where each element is also a 1ist specifying the constants for
a sub-experiment. Each sub-experiment uses the same structure as the constants
argument. See the constants argument documentation for details on how to
specify parameter values (default: NULL).

file (optional) A character string specifying the path to save the created XML file
(default: tempfile(pattern = "experiment-", fileext =".xml")).


https://en.wikipedia.org/wiki/XML

4 create_experiment

Details

Enclosing:

Since NetLogo only accepts double quotes for strings inside commands, we recommend always
using single quotes when writing NetLogo commands in R to avoid mistakes. For example, to run
the [1 "a" true] command, use '[1 "a” true]',not "[1 \"a\" truel”.

Multiple Commands:

Some arguments accept multiple NetLogo commands to be run in sequence. In such cases, you
can provide a character vector with each command as a separate element.

For example, to run two commands in sequence for the go argument, you can provide:
go = c("command-1", "command-2")

constants Argument:
The constants argument allows you to specify the parameters to vary in the experiment. It should
be a named 1ist where each name corresponds to a NetLogo global variable. The value for each
name can be either:
A scalar or vector (for enumerated values). For example, to set the variable initial-number-of-turtles
to 10, you would use 1list("initial-number-of-turtles” =10).
e A list with first, step, and last elements (for stepped values). For example, to vary
the variable initial-number-of-turtles from 1@ to 50 in steps of 10, you would use
list("initial-number-of-turtles” = list(first =10, step=10, last =50)).
When passing values to constants, character strings should be passed as is, without adding
quotes to them. For example, to set the variable pathway to "SSP-585", you should use 1ist ("pathway”
= "SSP-585"), not list("pathway” = '"SSP-585"").

Value

A character string with the path to the created XML file.

See Also

Other BehaviorSpace functions: inspect_experiment(), read_experiment(), run_experiment()

Examples

# The examples below reproduce experiments from the NetLogo Models Library.
# Try exporting these experiments from NetLogo and compare the XML files.

## Examples from the Wolf Sheep Predation Model (Sample Models) ----
### BehaviorSpace Combinatorial

setup_file <- create_experiment(
name = "BehaviorSpace Combinatorial”,
repetitions = 1,
sequential_run_order = TRUE,
run_metrics_every_step = FALSE,
time_limit = 1500,


https://en.wikipedia.org/wiki/XML

crean:_expernnent

setup = 'setup',

go = 'go',

post_run = 'wait .5',

run_metrics_condition = 'ticks mod 10 = @',

metrics = c(
'count sheep',
'count wolves',
'count grass'

),
constants = list(
"model-version” = "sheep-wolves-grass”,
"wolf-reproduce” = c(3, 5, 10, 15),
"wolf-gain-from-food” = c(10, 15, 30, 40)
)
)
setup_file

setup_file |> inspect_experiment()
### Behaviorspace Run 3 Experiments

setup_file <- create_experiment(
name = "Behaviorspace Run 3 Experiments”,
repetitions = 1,
sequential_run_order = TRUE,
run_metrics_every_step = FALSE,
time_limit = 1500,
setup = c(
'setup’',
pasted(
'print (word "sheep-reproduce:
'" wolf-reproduce)'

, wolf-reproduce: ',

n n

sheep-reproduce

),
pasted(
'print (word "sheep-gain-from-food: " sheep-gain-from-food ", ',
'wolf-gain-from-food: " wolf-gain-from-food)'
)
),
go = 'go’,

post_run = c(
'print (word "sheep:

n n

count sheep ", wolves: count wolves)',

Iprint nna ,
'wait 1'
)?
run_metrics_condition = 'ticks mod 10 = @',

metrics = c(
'count sheep',
'count wolves',
'count grass'
),
constants = list(
"model-version” = "sheep-wolves-grass”



create_experiment

),
sub_experiments = list(
list(
"sheep-reproduce” = 1,
"sheep-gain-from-food” = 1,
"wolf-reproduce” = 2,
"wolf-gain-from-food” = 10
),
list(
"sheep-reproduce” = 6,
"sheep-gain-from-food"” = 8,
"wolf-reproduce” = 5,
"wolf-gain-from-food” = 20
),
list(
"sheep-reproduce” = 20,
"sheep-gain-from-food” = 15,
"wolf-reproduce” = 15,
"wolf-gain-from-food"” = 30
)
)
)
setup_file

setup_file |> inspect_experiment()
#i## BehaviorSpace Run 3 Variable Values Per Experiments

setup_file <- create_experiment(
name = "BehaviorSpace Run 3 Variable Values Per Experiments”,
repetitions = 1,
sequential_run_order = TRUE,
run_metrics_every_step = FALSE,
time_limit = 1500,
setup = c(
'setup',
pasted(
'print (word "sheep-reproduce: sheep-reproduce ", ',
'wolf-reproduce: " wolf-reproduce)'

n

),
pasted(
'print (word "sheep-gain-from-food: " sheep-gain-from-food ", ',
'wolf-gain-from-food: " wolf-gain-from-food)'
)
),
go = 'go’,

post_run = c(
'print (word "sheep:
'orint """
'wait 1'

)Y

run_metrics_condition = 'ticks mod 10 = @',

n n n

count sheep ", wolves: count wolves)',



crean:_expernnent

metrics = c(
'count sheep',
'count wolves',
'count grass'
),
constants = list(
"model-version” = "sheep-wolves-grass”,
"sheep-reproduce” = 4,
"wolf-reproduce” = 2,
"sheep-gain-from-food"” = 4,
"wolf-gain-from-food” = 20
),
sub_experiments = list(
list(
"sheep-reproduce” = c(1, 6, 20)
),
list(
"wolf-reproduce” = c(2, 7, 15)
),
list(
"sheep-gain-from-food” = c(1, 8, 15)
),
list(
"wolf-gain-from-food” = c(10, 20, 30)
)
)
)

setup_file
setup_file |> inspect_experiment()
## Examples from the Spread of Disease Model (IABM Textbook) ----
### Population Density
setup_file <- create_experiment(
name = "Population Density",
repetitions = 10,
sequential_run_order = TRUE,

run_metrics_every_step = FALSE,
time_limit = NULL,

setup = 'setup',
go = 'go',
metrics = 'ticks',
constants = list(
"variant” = "mobile”,
"connections-per-node” = 4.1,
"num-people” = list(
first = 50,
step = 50,
last = 200

)7



"num-infected” = 1,
"disease-decay” = @
)
)
setup_file

setup_file |> inspect_experiment()

### Degree

setup_file <- create_experiment(

name = "Degree”,

repetitions = 10,
sequential_run_order = TRUE,
run_metrics_every_step = FALSE,
time_limit = 50,

setup = 'setup',
go = 'go’',
metrics = 'count turtles with [infected?]',

constants = list(
"num-people” = 200,
"connections-per-node” = list(
first = 0.5,
step = 0.5,
last = 4

)7

"disease-decay” = 10,
"variant” = "network"”,
"num-infected” = 1

setup_file

setup_file |> inspect_experiment()

### Environmental

setup_file <- create_experiment(

name = "Environmental”,
repetitions = 10,
sequential_run_order = TRUE,
run_metrics_every_step = FALSE,
time_limit = NULL,

setup = 'setup',
go = 'go',
metrics = 'ticks',

constants = list(
"num-people” = 200,
"connections-per-node” = 4,
"disease-decay” = list(
first = 0,

create_experiment



find_netlogo_console 9

step = 1,
last = 10
),
"variant” = "environmental”,
"num-infected” = 1
)
)
setup_file

setup_file |> inspect_experiment()

find_netlogo_console  Find NetLogo executable file

Description

find_netlogo_console() attempts to locate the NetLogo executable file on the user’s system.

Usage

find_netlogo_console()

Details
The function uses the following search order:

1. Checks the NETLOGO_CONSOLE environment variable. If set and the file exists, returns that
path.

2. If the environment variable is not set or the file does not exist, constructs and expands the path
based on the output of find_netlogo_home () (KNETLOGO_HOME>/NetLogo_Console.exe on
Windows or <NETLOGO_HOME>/NetLogo_Console for other systems).

Value

A character string specifying the path to the NetLogo executable file. Returns NA if the executable
cannot be found at any location.

See Also

Other system functions: find_netlogo_home(), find_netlogo_version()

Examples

## Not run:
find_netlogo_console()

## End(Not run)



10 find_netlogo_home

find_netlogo_home Find NetLogo installation directory

Description

find_netlogo_home() attempts to locate the installation directory of NetLogo on the user’s sys-
tem.

Usage

find_netlogo_home()

Details

The function uses the following search order:

1. Checks the NETLOGO_HOME environment variable. If set and the directory exists, returns that
path.

2. If the environment variable is not set or the directory does not exist, searches through common
installation paths for directories containing "NetLogo" (case-insensitive) in their name. If
multiple NetLogo installations are found in the same directory, the last one (alphabetically) is
returned.

Value

A character string specifying the path to the NetLogo installation directory. Returns NA if no
installation can be found.

See Also

Other system functions: find_netlogo_console(), find_netlogo_version()

Examples

## Not run:
find_netlogo_home()

## End(Not run)



find_netlogo_version 11

find_netlogo_version  Find NetLogo version

Description

find_netlogo_version() attempts to determine the NetLogo version installed on the user’s sys-
tem.

Usage

find_netlogo_version()

Details

The function uses the following detection methods in order:

1. If the NetLogo console executable is found by find_netlogo_console(), itruns NetLogo_Console
--headless --version command to retrieve the version information. This is the most reli-
able method.

2. If the executable is not found, it attempts to extract the version number from the installation
directory name returned by find_netlogo_home() (e.g., NetLogo 7.0.2 yields "7.0.2").
Note that this fallback may produce slightly different results if the directory was renamed or
uses a non-standard naming convention.

Value

A character string specifying the NetLogo version (e.g., "7.0.3"). Returns NA if the version
cannot be determined.

See Also

Other system functions: find_netlogo_console(), find_netlogo_home()

Examples

## Not run:
find_netlogo_version()

## End(Not run)



12

get_netlogo_shape

get_netlogo_shape

Download NetLogo shapes from LogoShapes

Description

get_netlogo_shape() downloads NetLogo shapes from the LogoShapes project on GitHub.

The collections and shapes available for download can be found in the LogoShapes project svg
directory. Refer to the LogoShapes documentation for more information about the different collec-

tions.

Note: This function requires an active internet connection and the httr2 package.

Usage

get_netlogo_shape(

shape,

collection

"netlogo-refined”,

dir = tempdir(),
user_agent = "logolink <https://CRAN.R-project.org/package=logolink>",

auth_token

Arguments

shape

collection

dir

user_agent

auth_token

Value

Sys.getenv("GH_TOKEN")

A character vector indicating the names of the shapes to download.

(optional) A character string indicating the collection of shapes to download
from (default: "netlogo-refined”).

(optional) A character string indicating the directory where the shapes will be
saved (default: tempdir()).

(optional) A character string indicating the user agent to use for the GitHub
APl requests. (default: "logolink <https://CRAN.R-project.org/package=logolink>").

(optional) A character string indicating a GitHub Personal Access Token (PAT)
for authentication with the GitHub API. This is useful when dealing with rate
limits. (default: Sys.getenv("GH_TOKEN")).

A named character vector with the file paths to the downloaded NetLogo shapes as SVG files.

Examples

## Not run:

library(fs)
library(magick)

## End(Not run)


https://github.com/danielvartan/logoshapes
https://github.com/
https://github.com/danielvartan/logoshapes
https://github.com/danielvartan/logoshapes/tree/main/svg
https://github.com/danielvartan/logoshapes
https://httr2.r-lib.org/
https://docs.github.com/en/rest
https://docs.github.com/en/rest
https://en.wikipedia.org/wiki/Personal_access_token
https://docs.github.com/en/rest
https://en.wikipedia.org/wiki/SVG

inspect_experiment 13

## Not run:
shape <- get_netlogo_shape("turtle”)

file_size(shape)
shape |> image_read_svg() |> image_ggplot()
## End(Not run)

## Not run:
shape <- get_netlogo_shape("turtle”, collection = "netlogo-simplified”)

file_size(shape)
shape |> image_read_svg() |> image_ggplot()
## End(Not run)

## Not run:
shape <- get_netlogo_shape("turtle”, collection = "netlogo-7-0-3")

file_size(shape)
shape |> image_read_svg() |> image_ggplot()

## End(Not run)

inspect_experiment Inspect NetLogo BehaviorSpace experiment file

Description

inspect_experiment() reads and prints the content of a NetLogo BehaviorSpace experiment
XML file to the R console. This is useful for debugging and verifying the structure of experiment
files created by create_experiment().

For complete guidance on setting up and running experiments in NetLL.ogo, please refer to the Be-
haviorSpace Guide.

Usage

inspect_experiment(file)

Arguments

file A character string specifying the path to the BehaviorSpace experiment XML
file.


https://docs.netlogo.org/behaviorspace.html
https://en.wikipedia.org/wiki/XML
https://docs.netlogo.org/behaviorspace.html#creating-an-experiment-setup
https://docs.netlogo.org/behaviorspace.html#creating-an-experiment-setup
https://docs.netlogo.org/behaviorspace.html
https://en.wikipedia.org/wiki/XML

14 parse_netlogo_color

Value

An invisible NULL. This function is called for its side effect of printing the XML content to the R
console.

See Also

Other BehaviorSpace functions: create_experiment(), read_experiment(), run_experiment()

Examples

file <- create_experiment(name = "My Experiment")

file |> inspect_experiment()

parse_netlogo_color Parse NetLogo colors

Description

parse_netlogo_color() parses NetLogo color codes into their approximate hexadecimal color
representations.

Note: This function requires the colorspace, and scales packages.

Usage

parse_netlogo_color(x, bias = 0.1)

Arguments
X A numeric vector containing NetLogo color codes (ranging from @ to 140) to
be parsed into hexadecimal color representations.
bias (optional) A numeric value between -1 and 1 that adjusts the lightness or dark-
ness of the resulting colors. Positive values lighten colors, while negative values
darken them. This only affects shaded colors (those with shades other than 5)
(default: 0.1).
Details

NetLogo color codes are based on 14 hues, which can be visualized by running base-colors in
the NetLogo console. Each hue can be adjusted using shades from @ to 9, where @ represents the
darkest shade and 5 represents the base shade. Shades 6 through 9 represent progressively lighter
variations.

Note that NetLogo also supports extracting RGB components directly with extract-rgb. This
function provides an alternative approach for obtaining color representations from NetL.ogo color
codes.


https://en.wikipedia.org/wiki/XML
https://en.wikipedia.org/wiki/Web_colors
https://colorspace.r-forge.r-project.org/
https://scales.r-lib.org/
https://en.wikipedia.org/wiki/Web_colors
https://docs.netlogo.org/dictionary.html#base-colors
https://en.wikipedia.org/wiki/RGB_color_model
https://docs.netlogo.org/dictionary.html#extract-rgb

parse_netlogo_list 15

Value
A character vector containing the approximate hexadecimal color representations corresponding
to the input NetLogo color codes.

See Also

Other parsing functions: parse_netlogo_list()

Examples

# Simple Parsing Examples -----

netlogo_base_colors <- c(

"gray” =5,
"red” = 15,
"orange" = 25,
"brown"” = 35,
"yellow" = 45,
"green” = 55,
"lime" = 65,
"turquoise” = 75,
"cyan" = 85,
"sky"” = 95,
"blue” = 105,

"violet” = 115,
"magenta” = 125,
"pink" = 135

)

parse_netlogo_color(netlogo_base_colors)

parse_netlogo_color(seq(10, 20, by = 1))
parse_netlogo_color(seq(10, 20, by = 0.5))
# Bias Adjustment Examples -----
parse_netlogo_color(17.5, bias = 0)
parse_netlogo_color(17.5, bias = -0.5)

parse_netlogo_color(17.5, bias = 0.5)

parse_netlogo_list Parse NetLogo lists



https://en.wikipedia.org/wiki/Web_colors

16 parse_netlogo_list

Description

parse_netlogo_list() parses NetLogo-style lists represented as strings (e.g., "[1 2 3]") into R
lists. It automatically detects numeric, integer, logical, and character types within the lists
and converts them accordingly.

Note: We recommend using this function only when necessary, as it can be computationally inten-
sive for large datasets and may not handle all edge cases. NetLogo provides a special output format
called lists that exports list metrics in a tabular structure. If your experiment includes metrics that
return NetLogo lists, include "lists” in the outputs argument of run_experiment() to capture
this output.

Usage

parse_netlogo_list(x)

Arguments

X An atomic vector potentially containing NetLogo-style lists.

Details

The function handles the following cases:

* Homogeneous lists: Lists containing elements of the same type are returned as atomic vectors
(e.g., "[1 231" becomes c(1L, 2L, 3L)).

* Mixed-type lists: Lists containing elements of different types are returned as R lists (e.g.,
"[1.1"a" truel]' becomes 1list(1.1, "a", TRUE)).

* Nested lists: Lists containing other lists are fused with the main list (e.g., '["a" "b" [1 211"
becomes list(c("a", "b"), c(1L, 2L))).

NetLogo boolean values (true/false) are converted to R logical values (TRUE/FALSE). NetLogo
NaN values are parsed as R NaN .

Value

A list where each element is the parsed result of the corresponding input element. Parsed elements
may be atomic vectors (for homogeneous lists) or nested lists (for mixed-type or nested lists). If a
NetLogo list is not detected in an input element, that element is returned as a single-element list
containing the original string.

See Also

Other parsing functions: parse_netlogo_color()

Examples

# Scalar Examples -----

"test' |> parse_netlogo_list() # Not a NetLogo list.


https://docs.netlogo.org/behaviorspace.html#lists-output

read_experiment 17

"[1]1" |> parse_netlogo_list()

"["a" "b" "c"1' |> parse_netlogo_list()

"[1 2 3]' |> parse_netlogo_list()

"[1.1 2.1 3.1]" |> parse_netlogo_list()

'[true false truel' |> parse_netlogo_list()

# Vector Examples -----

c(1, 2, 3) |> parse_netlogo_list() # Not a NetlLogo list.
c('["a" "b" "c"1', '["d" "e" "f"]1') |> parse_netlogo_list()
c('[1 231", '[456]") |> parse_netlogo_list()

c('[1.1 2.1 3.1]1", '[4.1 5.1 6.1]1"') |> parse_netlogo_list()
c('[true false truel', '[false true falsel') |> parse_netlogo_list()
# Mixed-Type Examples -----

'["a" "b" 1 2]' |> parse_netlogo_list()

"[1.1 2.1 3.1 true false]' |> parse_netlogo_list()

"[1.1 "a" truel]' |> parse_netlogo_list()

# Nested Examples -----

"["a" "b" "c" [1 211" |> parse_netlogo_list()

"["a" "b" "c" [1 2] true ["d" "c"1]1' |> parse_netlogo_list()

"[[1 2] [3 4] [5 611" |> parse_netlogo_list()

read_experiment Read NetLogo BehaviorSpace Experiment output

Description

read_experiment() reads NetLogo BehaviorSpace experiment output files as tidy data frames.
It automatically detects the output format (Table, Spreadsheet, Lists, or Stats) and parses the data
accordingly. The function also extracts metadata from the files.

Only version 2.0 (NetLogo 6.4 and later) of BehaviorSpace output files is supported.

Usage

read_experiment(file, tidy_output = TRUE)


https://docs.netlogo.org/behaviorspace.html
https://r4ds.hadley.nz/data-tidy.html
https://docs.netlogo.org/behaviorspace.html#table-output
https://docs.netlogo.org/behaviorspace.html#spreadsheet-output
https://docs.netlogo.org/behaviorspace.html#lists-output
https://docs.netlogo.org/behaviorspace.html#statistics-output

18 read_experiment

Arguments

file A character string specifying the path to the BehaviorSpace output CSV file.

tidy_output (optional) A logical flag indicating whether to tidy the output data frames.
If TRUE, output data frames are arranged according to tidy data principles. If
FALSE, only the default transformations from read_delim() and clean_names()
are applied to the output data (default: TRUE).

Value

A list containing the experiment results. The list includes the following elements, depending on
the output file provided:

* metadata: A list with metadata about the experiment run (present in all cases).

e table: A tibble with the results of the table output.

* spreadsheet: A list with the results of the spreadsheet output containing two elements:

— statistics: A tibble with data from the output first section.
— data: A tibble with data from the output second section.

lists: A tibble with the results of the 1ists output.

statistics: A tibble with the results of the statistics output.

See Also

Other BehaviorSpace functions: create_experiment(), inspect_experiment(), run_experiment()

Examples

file <- tempfile()

c(
'BehaviorSpace results (NetLogo 7.0.3), "Table version 2.0"',
pasted(
'"/opt/NetLogo 7-0-3/models/',
'IABM Textbook/chapter 4/Wolf Sheep Simple 5.nlogox"'
),

""Wolf Sheep Simple Model Analysis"',
'"01/05/2026 06:37:48:683 -0300""',
""min-pxcor”,"max-pxcor"”,"min-pycor"”, "max-pycor”"',
S VANE N ANE b AN LA
pasted(
""[run number]”, "number-of-sheep”, "number-of-wolves"”, ',

non

'"movement-cost”, "grass-regrowth-rate”, "energy-gain-from-grass”, ',

"o

'"energy-gain-from-sheep”, "[step]”,"count wolves"”,"count sheep

"

)?

'"3","500","5","0.5","0.3","2","5","0","5","500" ",
'"5" "500","5","0.5","0.3","2","5","0","5","500" ",
'"4" "500","5","0.5","0.3","2","5","0","5","500" ",
'"6","500","5","0.5","0.3","2","5","0","5","500" ",
'"1","500","5","0.5","0.3","2","5","0","5","500" ",
'"g", "500","5","0.5","0.3","2","5","0","5","500" ",


https://docs.netlogo.org/behaviorspace.html
https://en.wikipedia.org/wiki/Comma-separated_values
https://r4ds.hadley.nz/data-tidy.html
https://docs.netlogo.org/behaviorspace.html#table-output
https://docs.netlogo.org/behaviorspace.html#spreadsheet-output
https://docs.netlogo.org/behaviorspace.html#lists-output
https://docs.netlogo.org/behaviorspace.html#statistics-output

run_experiment 19

|119::’:150®JI’11511, ;10.51:’110'311’11211, 11511’ “@”,”5”, 1150011 ' ,
l"2",”500“,”5”, “0.5”,”@.3”,”2”, 11511, 1:011’11511,':509111
) 1>

writeLines(file)

read_experiment(file)

run_experiment Run NetLogo BehaviorSpace experiment

Description

run_experiment () runs a NetLogo BehaviorSpace experiment in headless mode and returns a
list with results as tidy data frames. It can be used with create_experiment() to create and run
experiments on the fly, or with an existing experiment stored in the NetLogo model file.

To avoid issues with list parsing, run_experiment() includes support for the special lists out-
put format. If your experiment includes metrics that return NetLogo lists, include "lists” in
the output argument to capture this output. Columns containing NetLogo lists are returned as
character vectors.

The function tries to locate the NetLogo installation automatically. This is usually successful, but if
it fails, you will need to set it manually. See the Details section for more information.

For complete guidance on setting up and running experiments in NetlL.ogo, please refer to the Be-
haviorSpace Guide.

Usage

run_experiment(
model_path,
setup_file = NULL,
experiment = NULL,
output = "table",
other_arguments = NULL,
timeout = Inf,
tidy_output = TRUE

)
Arguments

model_path A character string specifying the path to the NetLogo model file (with exten-
sion .nlogo, .nlogo3d, .nlogox, or .nlogox3d).

setup_file (optional) A character string specifying the path to an XML file containing the
experiment definition. This file can be created using create_experiment() or
exported from the NetLLogo BehaviorSpace interface (default: NULL).

experiment (optional) A character string specifying the name of the experiment defined in

the NetLogo model file (default: NULL).


https://docs.netlogo.org/behaviorspace.html
https://r4ds.hadley.nz/data-tidy.html
https://docs.netlogo.org/behaviorspace.html#lists-output
https://docs.netlogo.org/behaviorspace.html
https://docs.netlogo.org/behaviorspace.html
https://en.wikipedia.org/wiki/XML
https://docs.netlogo.org/behaviorspace.html

20 run_experiment

output (optional) A character vector specifying which output types to generate from
the experiment. Valid options are: "table”, "spreadsheet”, "lists"”, and
"statistics”. At least one of "table"” or "spreadsheet” must be included.
See the BehaviorSpace documentation on formats for details about each output
type (default: c("table”, "lists")).

other_arguments
(optional) A character vector specifying any additional command-line argu-
ments to pass to the NetLLogo executable. For example, you can use c("--threads
4") to specify the number of threads. See the Details section for more informa-
tion (default: NULL).

timeout (optional) A numeric value specifying the maximum time (in seconds) to wait
for the NetLogo process to complete. If the process exceeds this time limit, it
will be terminated, and the function will return the available output up to that
point. Use Inf for no time limit (default: Inf).

tidy_output (optional) A logical flag indicating whether to tidy the output data frames.
If TRUE, output data frames are arranged according to tidy data principles. If
FALSE, only the default transformations from read_delim() and clean_names()
are applied to the output data (default: TRUE).

Details

Setting the NetLogo Installation Path:

If run_experiment () cannot find the NetLogo installation, you will need to set the path manually
using the NETLOGO_HOME environment variable. On Windows, a typical path is something like
C:\Program Files\NetLogo 7.@.3. You can set this variable temporarily in your R session
with:

Sys.setenv(NETLOGO_HOME = "PATH/TO/NETLOGO/INSTALLATION")

or permanently by adding it to your .Renviron file.

If even after setting the NETLOGO_HOME variable you still encounter issues, try setting a NETLOGO_CONSOLE
environment variable with the path to the NetLogo executable or binary. On Windows, a typical

path is something like C: \Program Files\NetLogo 7.0.3\NetLogo.exe.

NetLogo 3D:

The function automatically detects whether the provided model is a 3D model (based on the file
extension) and adjusts the command-line arguments accordingly. You do not need to set the --3D
flag to the other_arguments parameter manually.

Handling NetLogo Lists:

NetLogo uses a specific syntax for lists (e.g., "[1 2 3]") that is incompatible with standard CSV
formats. To address this, NetLogo provides a special output format called lists that exports list
metrics in a tabular structure. If your experiment includes metrics that return NetLogo lists,
include "lists” in the output argument to capture this output. Columns containing NetLogo
lists are returned as character vectors.

The parse_netlogo_list() function is available for parsing NetLogo list values embedded in
other outputs. However, we recommend using it only when necessary, as it can be computationally
intensive for large datasets and may not handle all edge cases.


https://docs.netlogo.org/behaviorspace.html
https://docs.netlogo.org/behaviorspace.html#run-options-formats
https://r4ds.hadley.nz/data-tidy.html
https://rstats.wtf/r-startup.html#renviron
https://en.wikipedia.org/wiki/Comma-separated_values
https://docs.netlogo.org/behaviorspace.html#lists-output

run_experiment 21

Additional Command-Line Arguments:

You can pass additional command-line arguments to the NetLogo executable using the other_arguments
parameter. This can be useful for specifying options such as the number of threads to use or other
NetLogo-specific flags.

For example, to specify the number of threads, you can use:

run_experiment(
model_path = "path/to/model.nlogox”,
setup_file = "path/to/experiment.xml”,
other_arguments = c("--threads 4")

)

There are a variety of command-line options available, but some are reserved for internal use by
run_experiment () and cannot be modified. These are:

e --headless: Ensures NetLogo runs in headless mode.

e --3D: Specifies if the model is a 3D model (automatically set based on the model file exten-

sion).

» —-model: Specifies the path to the NetLogo model file.

» —-setup-file: Specifies the path to the experiment XML file.

» —-experiment: Specifies the name of the experiment defined in the model.

* —-table: Specifies the output file for the table results.

* —-spreadsheet: Specifies the output file for the spreadsheet results.

» —-lists: Specifies the output file for the lists results.

» —-stats: Specifies the output file for the statistics results.

For a complete list of available options, refer to the BehaviorSpace Guide.

Non-Tabular Output:

If the experiment generates any non-tabular output (e.g., prints, error messages, warnings), it will
be captured and displayed as an informational message after the results data frame is returned.
This allows you to see any important messages generated during the experiment run. Keep in
mind that excessive non-tabular output may clutter your R console.

Value

A list containing the experiment results. The 1ist includes the following elements, depending on
the values specified in the output parameter:

* metadata: A list with metadata about the experiment run (present in all cases).

* table: A tibble with the results of the table output.

* spreadsheet: A list with the results of the spreadsheet output containing two elements:

— statistics: A tibble with data from the output first section.
— data: A tibble with data from the output second section.

e lists: A tibble with the results of the 1ists output.
* statistics: A tibble with the results of the statistics output.


https://en.wikipedia.org/wiki/Thread_(computing)
https://en.wikipedia.org/wiki/XML
https://docs.netlogo.org/behaviorspace.html#table-output
https://docs.netlogo.org/behaviorspace.html#spreadsheet-output
https://docs.netlogo.org/behaviorspace.html#lists-output
https://docs.netlogo.org/behaviorspace.html#statistics-output
https://docs.netlogo.org/behaviorspace.html#running-from-the-command-line
https://docs.netlogo.org/behaviorspace.html#table-output
https://docs.netlogo.org/behaviorspace.html#spreadsheet-output
https://docs.netlogo.org/behaviorspace.html#lists-output
https://docs.netlogo.org/behaviorspace.html#statistics-output

22 run_experiment

See Also

Other BehaviorSpace functions: create_experiment(), inspect_experiment(), read_experiment()

Examples

# Defining the Model -----

## Not run:
# This model is included with NetLogo installations.
model_path <-
find_netlogo_home() |>
file.path(
"models”,
"IABM Textbook”,
"chapter 4",
"Wolf Sheep Simple 5.nlogox”

## End(Not run)
# Creating an Experiment -----

## Not run:
setup_file <- create_experiment(
name = "Wolf Sheep Simple Model Analysis”,
repetitions = 10,
sequential_run_order = TRUE,
run_metrics_every_step = TRUE,
setup = "setup”,
go = "go",
time_limit = 1000,
metrics = c(
'count wolves',
'count sheep'
),
run_metrics_condition = NULL,
constants = list(
"number-of-sheep” = 500,
"number-of-wolves” = list(
first = 5,
step = 1,
last = 15
),
"movement-cost” = 0.5,
"grass-regrowth-rate” = 0.3,
"energy-gain-from-grass” = 2,
"energy-gain-from-sheep” = 5

## End(Not run)



run_experiment

# Running the Experiment -----

## Not run:
model_path |>
run_experiment(
setup_file = setup_file
)

## End(Not run)
# Running an Experiment Defined in the NetlLogo Model File

## Not run:
model_path |>
run_experiment(
experiment = "Wolf Sheep Simple model analysis”

)

## End(Not run)

23



Index

* BehaviorSpace functions
create_experiment, 2
inspect_experiment, 13
read_experiment, 17
run_experiment, 19

* parsing functions
parse_netlogo_color, 14
parse_netlogo_list, 15

* system functions
find_netlogo_console, 9
find_netlogo_home, 10
find_netlogo_version, 11

x utility functions
get_netlogo_shape, 12

atomic, /16

character, 3, 4, 9—-13, 15, 16, 18-20

clean_names(), 18, 20
create_experiment, 2, 14, 18, 22
create_experiment(), 13, 19

find_netlogo_console, 9, 10, 11
find_netlogo_console(), 11/
find_netlogo_home, 9, 10, 11
find_netlogo_home(), 9, 11
find_netlogo_version, 9, 10, 11

get_netlogo_shape, 12

inspect_experiment, 4, 13, 18, 22
integer, 16
invisible, /14

list, 3,4, 16,18, 19,21
logical, 3, 16, 18, 20

NA, 911
NaN, 16
numeric, 14, 16, 20

24

parse_netlogo_color, 14, 16
parse_netlogo_list, 15, 15
parse_netlogo_list(), 20

read_delim(), 18, 20
read_experiment, 4, 14,17, 22
run_experiment, 4, 14, 18, 19
run_experiment(), 2, 16

tibble, 18, 21



	create_experiment
	find_netlogo_console
	find_netlogo_home
	find_netlogo_version
	get_netlogo_shape
	inspect_experiment
	parse_netlogo_color
	parse_netlogo_list
	read_experiment
	run_experiment
	Index

