
Package ‘grpnet’
January 8, 2026

Type Package

Title Group Elastic Net Regularized GLMs and GAMs

Version 1.1

Date 2026-01-07

Description Efficient algorithms for fitting generalized linear and additive models with group elas-
tic net penalties as described in Helwig (2025) <doi:10.1080/10618600.2024.2362232>. Imple-
ments group LASSO, group MCP, and group SCAD with an optional group ridge penalty. Com-
putes the regularization path for linear regression (gaussian), multivariate regression (multigaus-
sian), smoothed support vector machines (svm1), squared support vector machines (svm2), logis-
tic regression (binomial), proportional odds logistic regression (ordinal), multinomial logistic re-
gression (multinomial), log-linear count regression (poisson and negative.binomial), and log-
linear continuous regression (gamma and inverse gaussian). Supports default and formula meth-
ods for model specification, k-fold cross-validation for tuning the regularization parame-
ters, and nonparametric regression via tensor product reproducing kernel (smoothing spline) ba-
sis function expansion.

License GPL (>= 2)

Encoding UTF-8

Depends R (>= 3.5.0)

NeedsCompilation yes

Author Nathaniel E. Helwig [aut, cre]

Maintainer Nathaniel E. Helwig <helwig@umn.edu>

Repository CRAN

Date/Publication 2026-01-08 00:40:08 UTC

Contents
auto . 2
coef . 3
cv.compare . 5
cv.grpnet . 7
family.grpnet . 15
grpnet . 18

1

https://doi.org/10.1080/10618600.2024.2362232

2 auto

plot.cv.grpnet . 28
plot.grpnet . 30
predict.cv.grpnet . 31
predict.grpnet . 38
print . 47
rk . 48
rk.model.matrix . 51
row.kronecker . 53
StartupMessage . 54
visualize.loss . 55
visualize.penalty . 57
visualize.shrink . 59

Index 61

auto Auto MPG Data Set

Description

Miles per gallon and other characteristics of vehicles from the 1970s-1980s. A version of this
dataset was used as the 1983 American Statistical Association Exposition dataset.

Usage

data("auto")

Format

A data frame with 392 observations on the following 9 variables.

mpg miles per gallon (numeric vector)

cylinders number of cylinders: 3,4,5,6,8 (ordered factor)

displacement engine displacement in cubic inches (numeric vector)

horsepower engine horsepower (integer vector)

weight vehicle weight in of lbs. (integer vector)

acceleration 0-60 mph time in sec. (numeric vector)

model.year ranging from 1970 to 1982 (integer vector)

origin region of origin: American, European, Japanese (factor vector)

Details

This is a modified version of the "Auto MPG Data Set" on the UCI Machine Learning Repository,
which is a modified version of the "cars" dataset on StatLib.

Compared to the version of the dataset in UCI’s MLR, this version of the dataset has removed (i) the
6 rows with missing horsepower scores, and (ii) the last column giving the name of each vehicle
(car.name).

coef 3

Source

The dataset was originally collected by Ernesto Ramos and David Donoho.
StatLib—Datasets Archive at Carnegie Mellon University http://lib.stat.cmu.edu/datasets/cars.data
Machine Learning Repository at University of California Irvine https://archive.ics.uci.edu/ml/datasets/Auto+MPG

Examples

load data
data(auto)

display structure
str(auto)

display header
head(auto)

see 'cv.grpnet' for cross-validation examples
?cv.grpnet

see 'grpnet' for fitting examples
?grpnet

coef Extract Coefficients for cv.grpnet and grpnet Fits

Description

Obtain coefficients from a cross-validated group elastic net regularized GLM (cv.grpnet) or a group
elastic net regularized GLM (grpnet) object.

Usage

S3 method for class 'cv.grpnet'
coef(object,

s = c("lambda.1se", "lambda.min"),
...)

S3 method for class 'grpnet'
coef(object,

s = NULL,
...)

Arguments

object Object of class "cv.grpnet" or "grpnet"
s Lambda value(s) at which predictions should be obtained. For "cv.grpnet" ob-

jects, default uses the 1se solution. For "grpnet" objects, default uses s = object$lambda.
Interpolation is used for s values that are not included in object$lambda.

... Additional arguments (ignored)

4 coef

Details

coef.cv.grpnet:
Returns the coefficients that are used by the predict.cv.grpnet function to form predictions from
a fit cv.grpnet object.

coef.grpnet:
Returns the coefficients that are used by the predict.grpnet function to form predictions from a
fit grpnet object.

Value

For multigaussian and multinomial response variables, returns a list of length length(object$ylev),
where the j-th element is a matrix of dimension c(ncoef, length(s)) giving the coefficients for
object$ylev[j].

For other response variables, returns a matrix of dimension c(ncoef, length(s)), where the i-th
column gives the coefficients for s[i].

Note

The syntax of these functions closely mimics that of the coef.cv.glmnet and coef.glmnet func-
tions in the glmnet package (Friedman, Hastie, & Tibshirani, 2010).

Author(s)

Nathaniel E. Helwig <helwig@umn.edu>

References

Friedman, J., Hastie, T., & Tibshirani, R. (2010). Regularization paths for generalized linear models
via coordinate descent. Journal of Statistical Software, 33(1), 1-22. doi:10.18637/jss.v033.i01

Helwig, N. E. (2025). Versatile descent algorithms for group regularization and variable selection
in generalized linear models. Journal of Computational and Graphical Statistics, 34(1), 239-252.
doi:10.1080/10618600.2024.2362232

See Also

print.coef.grpnet for printing coef.grpnet objects

predict.cv.grpnet for predicting from cv.grpnet objects

predict.grpnet for predicting from grpnet objects

Examples

######***###### grpnet ######***######

load data
data(auto)

fit model (formula method, response = mpg)
mod <- grpnet(mpg ~ ., data = auto)

https://doi.org/10.18637/jss.v033.i01
https://doi.org/10.1080/10618600.2024.2362232

cv.compare 5

extract coefs for regularization path (output = 12 x 100 matrix)
coef(mod)

extract coefs at 3 particular points (output = 12 x 3 matrix)
coef(mod, s = c(1.5, 1, 0.5))

######***###### cv.grpnet ######***######

load data
data(auto)

5-fold cv (formula method, response = mpg)
set.seed(1)
mod <- cv.grpnet(mpg ~ ., data = auto, nfolds = 5, alpha = 1)

extract coefs for "min" solution (output = 12 x 1 matrix)
coef(mod)

extract coefs for "1se" solution (output = 12 x 1 matrix)
coef(mod, s = "lambda.1se")

extract coefs at 3 particular points (output = 12 x 3 matrix)
coef(mod, s = c(1.5, 1, 0.5))

cv.compare Compare Multiple cv.grpnet Solutions

Description

Creates a plot (default) or returns a data frame (otherwise) that compares the cross-validation error
for multiple cv.grpnet fits.

Usage

cv.compare(x,
s = c("lambda.1se", "lambda.min"),
plot = TRUE,
at = 1:length(x),
nse = 1,
point.col = "red",
line.col = "gray",
lwd = 2,
bwd = 0.02,
labels = NULL,
xlim = NULL,
ylim = NULL,
xlab = NULL,

6 cv.compare

ylab = NULL,
...)

Arguments

x a single cv.grpnet object or a list of cv.grpnet objects.

s the tuning parameter value at which to plot results (if x is a list).

plot switch controlling whether a plot is produced (default) versus data frame.

at x-axis coordinates for plotting the cv error for each solution.

nse number of standard errors to use for error bars in plot.

point.col color for point used to plot the average of the cv error.

line.col color for lines used to plot the standard error for the cv error.

lwd width of lines used to plot the standard error for the cv error.

bwd width of standard error bars in terms of proportion of range(x).

labels labels for x-axis tick marks. Defaults to names(x).

xlim axis limits for abscissa (x-axis)

ylim axis limits for ordinate (y-axis)

xlab axis label for abscissa (x-axis)

ylab axis label for ordinate (y-axis)

... additional arguments passed to plotting functions.

Details

Default behavior creates a plot that displays the mean cv error +/- 1 se for each of the requested
solutions.

If the input x is a single cv.grpnet object, then the function plots the lambda.min and lambda.1se
solutions.

If the input x is a list of cv.grpnet objects, then the function plots either the lambda.min or the
lambda.1se solution (controlled by s argument) for all of the input models.

Value

When plot = TRUE, there is no return value (it produces a plot)

When plot = FALSE, a data.frame is returned with the mean cv error (and se) for each solution

Author(s)

Nathaniel E. Helwig <helwig@umn.edu>

References

Helwig, N. E. (2025). Versatile descent algorithms for group regularization and variable selection
in generalized linear models. Journal of Computational and Graphical Statistics, 34(1), 239-252.
doi:10.1080/10618600.2024.2362232

https://doi.org/10.1080/10618600.2024.2362232

cv.grpnet 7

See Also

plot.cv.grpnet for plotting cv error path (for all lambdas)

plot.grpnet for plotting regularization path (for single lambda)

Examples

load data
data(auto)

LASSO penalty
set.seed(1)
mod1 <- cv.grpnet(mpg ~ ., data = auto, nfolds = 5, alpha = 1)

MCP penalty
set.seed(1)
mod2 <- cv.grpnet(mpg ~ ., data = auto, nfolds = 5, alpha = 1, penaly = "MCP")

SCAD penalty
set.seed(1)
mod3 <- cv.grpnet(mpg ~ ., data = auto, nfolds = 5, alpha = 1, penaly = "SCAD")

compare lambda.min and lambda.1se for mod1
cv.compare(mod1)

compare lambda.1se for mod1, mod2, mod3
cv.compare(x = list(mod1, mod2, mod3), labels = c("LASSO", "MCP", "SCAD"))

cv.grpnet Cross-Validation for grpnet

Description

Implements k-fold cross-validation for grpnet to find the regularization parameters that minimize
the prediction error (deviance, mean squared error, mean absolute error, or misclassification rate).

Usage

cv.grpnet(x, ...)

Default S3 method:
cv.grpnet(x,

y,
group,
weights = NULL,
offset = NULL,
alpha = c(0.01, 0.25, 0.5, 0.75, 1),
gamma = c(3, 4, 5),
type.measure = NULL,

8 cv.grpnet

nfolds = 10,
foldid = NULL,
same.lambda = FALSE,
parallel = FALSE,
cluster = NULL,
verbose = interactive(),
adaptive = FALSE,
power = 1,
...)

S3 method for class 'formula'
cv.grpnet(formula,

data,
use.rk = TRUE,
weights = NULL,
offset = NULL,
alpha = c(0.01, 0.25, 0.5, 0.75, 1),
gamma = c(3, 4, 5),
type.measure = NULL,
nfolds = 10,
foldid = NULL,
same.lambda = FALSE,
parallel = FALSE,
cluster = NULL,
verbose = interactive(),
adaptive = FALSE,
power = 1,
...)

Arguments

x Model (design) matrix of dimension nobs by nvars (n× p).

y Response vector of length n or matrix of dimension n × m. Note that matrix
inputs are (i) required for multigaussian family, (ii) allowed for binomial and
multinomial families (see "Binomial and multinomial" section in grpnet), and
(iii) not permitted for other families.

group Group label vector (factor, character, or integer) of length p. Predictors with the
same label are grouped together for regularization.

formula Model formula: a symbolic description of the model to be fitted. Uses the same
syntax as lm and glm.

data Optional data frame containing the variables referenced in formula.

use.rk If TRUE (default), the rk.model.matrix function is used to build the model ma-
trix. Otherwise, the model.matrix function is used to build the model matrix.
Additional arguments to the rk.model.matrix function can be passed via the
... argument.

weights Optional vector of length n with non-negative weights to use for weighted (pe-
nalized) likelihood estimation. Defaults to a vector of ones.

cv.grpnet 9

offset Optional vector of length n with an a priori known term to be included in the
model’s linear predictor. Defaults to a vector of zeros.

alpha Scalar or vector specifying the elastic net tuning parameter α. If alpha is a vec-
tor (default), then (a) the same foldid is used to compute the cross-validation
error for each α, and (b) the solution for the optimal α is returned.

gamma Scalar or vector specifying the penalty hyperparameter γ for MCP or SCAD.
If gamma is a vector (default), then (a) the same foldid is used to compute
the cross-validation error for each γ, and (b) the solution for the optimal γ is
returned.

type.measure Loss function for cross-validation. Options include: "deviance" for model
deviance, "mse" for mean squared error, "mae" for mean absolute error, or
"class" for classification error. Note that "class" is only available for bino-
mial and multinomial families. The default is classification error (for binomial
and multinomial) or mean absolute error (others).

nfolds Number of folds for cross-validation.
foldid Optional vector of length n giving the fold identification for each observation.

Must be coercible into a factor. After coersion, the nfolds argument is defined
as nfolds = nlevels(foldid).

same.lambda Logical specfying if the same λ sequence should be used for fitting the model
to each fold’s data. If FALSE (default), the λ sequence is determined separately
holding out each fold, and the λ sequence from the full model is used to align the
predictions. If TRUE, the λ sequence from the full model is used to fit the model
for each fold. The default often provides better (i.e., more stable) computational
performance.

parallel Logical specifying if sequential computing (default) or parallel computing should
be used. If TRUE, the fitting for each fold is parallelized.

cluster Optional cluster to use for parallel computing. If parallel = TRUE and cluster
= NULL, then the cluster is defined cluster = makeCluster(2L), which uses
two cores. Recommended usage: cluster = makeCluster(detectCores())

verbose Logical indicating if the fitting progress should be printed. Defaults to TRUE in
interactive sessions and FALSE otherwise.

adaptive Logical indicating if the adaptive group elastic net should be used (see Note).
power If adaptive = TRUE, then the adaptive penalty weights are defined by dividing

the original penalty weights by tapply(coef, group, norm, type = "F")^power.
... Optional additional arguments for grpnet (e.g., standardize, penalty.factor,

etc.)

Details

This function calls the grpnet function nfolds+1 times: once on the full dataset to obtain the
lambda sequence, and once holding out each fold’s data to evaluate the prediction error. The syntax
of (the default S3 method for) this function closely mimics that of the cv.glmnet function in the
glmnet package (Friedman, Hastie, & Tibshirani, 2010).

Let Du = {yu,Xu} denote the u-th fold’s data, let D[u] = {y[u],X[u]} denote the full dataset
excluding the u-th fold’s data, and let βλ[u] denote the coefficient estimates obtained from fitting
the model to D[u] using the regularization parameter λ.

10 cv.grpnet

The cross-validation error for the u-th fold is defined as

Eu(λ) = C(βλ[u],Du)

where C(·, ·) denotes the cross-validation loss function that is specified by type.measure. For
example, the "mse" loss function is defined as

C(βλ[u],Du) = ∥yu −Xuβλ[u]∥2

where ∥ · ∥ denotes the L2 norm.

The mean cross-validation error cvm is defined as

Ē(λ) =
1

v

v∑
u=1

Eu(λ)

where v is the total number of folds. The standard error cvsd is defined as

S(λ) =

√√√√ 1

v(v − 1)

v∑
u=1

(Eu(λ)− Ē(λ))2

which is the classic definition of the standard error of the mean.

Value

lambda regularization parameter sequence for the full data

cvm mean cross-validation error for each lambda

cvsd estimated standard error of cvm

cvup upper curve: cvm + cvsd

cvlo lower curve: cvm - cvsd

nzero number of non-zero groups for each lambda

grpnet.fit fitted grpnet object for the full data

lambda.min value of lambda that minimizes cvm

lambda.1se largest lambda such that cvm is within one cvsd from the minimum (see Note)

index two-element vector giving the indices of lambda.min and lambda.1se in the
lambda vector, i.e., c(minid, se1id) as defined in the Note

type.measure loss function for cross-validation (used for plot label)

call matched call

time runtime in seconds to perform k-fold CV tuning

tune data frame containing the tuning results, i.e., min(cvm) for each combination of
alpha and/or gamma

cv.grpnet 11

Note

When adaptive = TRUE, the adaptive group elastic net is used:
(1) an initial fit with alpha = 0 estimates the penalty.factor
(2) a second fit using estimated penalty.factor is returned

lambda.1se is defined as follows:
minid <- which.min(cvm)
min1se <- cvm[minid] + cvsd[minid]
se1id <- which(cvm <= min1se)[1]
lambda.1se <- lambda[se1id]

Author(s)

Nathaniel E. Helwig <helwig@umn.edu>

References

Friedman, J., Hastie, T., & Tibshirani, R. (2010). Regularization paths for generalized linear models
via coordinate descent. Journal of Statistical Software, 33(1), 1-22. doi:10.18637/jss.v033.i01

Helwig, N. E. (2025). Versatile descent algorithms for group regularization and variable selection
in generalized linear models. Journal of Computational and Graphical Statistics, 34(1), 239-252.
doi:10.1080/10618600.2024.2362232

See Also

plot.cv.grpnet for plotting the cross-validation error curve

predict.cv.grpnet for predicting from cv.grpnet objects

grpnet for fitting group elastic net regularization paths

Examples

######***###### family = "gaussian" ######***######

load data
data(auto)

10-fold cv (formula method, response = mpg)
set.seed(1)
mod <- cv.grpnet(mpg ~ ., data = auto)

print min and 1se solution info
mod

plot cv error curve
plot(mod)

######***###### family = "multigaussian" ######***######

https://doi.org/10.18637/jss.v033.i01
https://doi.org/10.1080/10618600.2024.2362232

12 cv.grpnet

load data
data(auto)

10-fold cv (formula method, response = (mpg, displacement))
y <- as.matrix(auto[,c(1,3)])
set.seed(1)
mod <- cv.grpnet(y ~ ., data = auto[,-c(1,3)], family = "multigaussian",

standardize.response = TRUE)

print min and 1se solution info
mod

plot cv error curve
plot(mod)

######***###### family = "svm1" ######***######

load data
data(auto)

redefine origin (Domestic vs Foreign)
auto$origin <- ifelse(auto$origin == "American", "Domestic", "Foreign")

10-fold cv (default method, response = origin with 2 levels)
set.seed(1)
mod <- cv.grpnet(origin ~ ., data = auto, family = "svm1")

print min and 1se solution info
mod

plot cv error curve
plot(mod)

######***###### family = "svm2" ######***######

load data
data(auto)

redefine origin (Domestic vs Foreign)
auto$origin <- ifelse(auto$origin == "American", "Domestic", "Foreign")

10-fold cv (default method, response = origin with 2 levels)
set.seed(1)
mod <- cv.grpnet(origin ~ ., data = auto, family = "svm2")

print min and 1se solution info
mod

cv.grpnet 13

plot cv error curve
plot(mod)

######***###### family = "logit" ######***######

load data
data(auto)

redefine origin (Domestic vs Foreign)
auto$origin <- ifelse(auto$origin == "American", "Domestic", "Foreign")

10-fold cv (default method, response = origin with 2 levels)
set.seed(1)
mod <- cv.grpnet(origin ~ ., data = auto, family = "logit")

print min and 1se solution info
mod

plot cv error curve
plot(mod)

######***###### family = "binomial" ######***######

load data
data(auto)

redefine origin (Domestic vs Foreign)
auto$origin <- ifelse(auto$origin == "American", "Domestic", "Foreign")

10-fold cv (default method, response = origin with 2 levels)
set.seed(1)
mod <- cv.grpnet(origin ~ ., data = auto, family = "binomial")

print min and 1se solution info
mod

plot cv error curve
plot(mod)

######***###### family = "multinomial" ######***######

load data
data(auto)

10-fold cv (formula method, response = origin with 3 levels)
set.seed(1)
mod <- cv.grpnet(origin ~ ., data = auto, family = "multinomial")

14 cv.grpnet

print min and 1se solution info
mod

plot cv error curve
plot(mod)

######***###### family = "ordinal" ######***######

load data
data(auto)

10-fold cv (formula method, response = cylinders with 5 levels)
set.seed(1)
mod <- cv.grpnet(cylinders ~ ., data = auto, family = "ordinal")

print min and 1se solution info
mod

plot cv error curve
plot(mod)

######***###### family = "poisson" ######***######

load data
data(auto)

10-fold cv (formula method, response = horsepower)
set.seed(1)
mod <- cv.grpnet(horsepower ~ ., data = auto, family = "poisson")

print min and 1se solution info
mod

plot cv error curve
plot(mod)

######***###### family = "negative.binomial" ######***######

load data
data(auto)

10-fold cv (formula method, response = horsepower)
set.seed(1)
mod <- cv.grpnet(horsepower ~ ., data = auto, family = "negative.binomial")

print min and 1se solution info
mod

family.grpnet 15

plot cv error curve
plot(mod)

######***###### family = "Gamma" ######***######

load data
data(auto)

10-fold cv (formula method, response = origin)
set.seed(1)
mod <- cv.grpnet(mpg ~ ., data = auto, family = "Gamma")

print min and 1se solution info
mod

plot cv error curve
plot(mod)

######***###### family = "inverse.gaussian" ######***######

load data
data(auto)

10-fold cv (formula method, response = origin)
set.seed(1)
mod <- cv.grpnet(mpg ~ ., data = auto, family = "inverse.gaussian")

print min and 1se solution info
mod

plot cv error curve
plot(mod)

family.grpnet Prepare ’family’ Argument for grpnet

Description

Takes in the family argument from grpnet and returns a list containing the information needed for
fitting and/or tuning the model.

Usage

family.grpnet(object, theta = 1)

16 family.grpnet

Arguments

object two options: (1) an object of class "grpnet" or "cv.grpnet"; or (2) a character
specifying the exponential family: "gaussian", "multigaussian", "svm1",
"svm2", "logit", "binomial", "multinomial", "poisson", "negative.binomial",
"Gamma", "inverse.gaussian"

theta positive scalar that serves as an additional hyperparameter for various loss func-
tions.
svm1: additional parameter that controls the smoothing rate for the hinge loss
function (see Note below).
negative.binomial: size parameter such that the variance function is defined as
V (µ) = µ+ µ2/θ

Details

There is only one available link function for each family:
* gaussian (identity): µ = X⊤β
* multigaussian (identity): µℓ = X⊤βℓ

* svm1/svm2 (identity): µ = X⊤β
* binomial/logit (logit): log(π

1−π) = X⊤β

* multinomial (symmetric): πℓ =
exp(X⊤βℓ)∑m
l=1 exp(X⊤βl)

* ordinal (logit): log(Πℓ

1−Πℓ
) = αℓ +X⊤β

* poisson (log): log(µ) = X⊤β
* negative.binomial (log): log(µ) = X⊤β
* Gamma (log): log(µ) = X⊤β
* inverse.gaussian (log): log(µ) = X⊤β

Value

List with components:

family same as input object, i.e., character specifying the family

linkinv function for computing inverse of link function

dev.resids function for computing deviance residuals

Note

For gaussian family, this returns the full output produced by gaussian.

For svm1 family, the quadratically smoothed hinge loss is defined as

svm1(z) =

 0 z > 1
(1− z)2/(2θ) 1− θ < z ≤ 1
1− z − θ/2 z ≤ 1− θ

where z = Y η with Y ∈ {−1, 1} denoting the response and η = X⊤β denoting the linear predictor.
Note that the svm1 loss function approaches the support vector machine (i.e., hinge) loss function
as θ → 0.

family.grpnet 17

For svm2 family, the squared hinge loss is defined as

svm2(z) =

{
0 z > 1
(1− z)2 z ≤ 1

where z = Y η with Y ∈ {−1, 1} denoting the response and η = X⊤β denoting the linear predictor.
Note that the svm1 loss function approaches the support vector machine (i.e., hinge) loss function
as θ → 0.

For ordinal family, a cumulative link model is used, i.e.,

log(
Πℓ

1−Πℓ
) = αℓ +X⊤β

where Πℓ = P (Y ≥ yℓ) is the probabilty that the response exceeds the ℓ-th ordered response
category for ℓ = 2, . . . ,m.

Author(s)

Nathaniel E. Helwig <helwig@umn.edu>

References

Helwig, N. E. (2025). Versatile descent algorithms for group regularization and variable selection
in generalized linear models. Journal of Computational and Graphical Statistics, 34(1), 239-252.
doi:10.1080/10618600.2024.2362232

See Also

visualize.loss for plotting loss functions

grpnet for fitting group elastic net regularization paths

cv.grpnet for k-fold cross-validation of lambda

Examples

family.grpnet("gaussian")

family.grpnet("multigaussian")

family.grpnet("svm1", theta = 0.1)

family.grpnet("svm2")

family.grpnet("logit")

family.grpnet("binomial")

family.grpnet("multinomial")

family.grpnet("ordinal")

family.grpnet("poisson")

https://doi.org/10.1080/10618600.2024.2362232

18 grpnet

family.grpnet("negative.binomial", theta = 10)

family.grpnet("Gamma")

family.grpnet("inverse.gaussian")

grpnet Fit a Group Elastic Net Regularized GLM/GAM

Description

Fits generalized linear/additive models with a group elastic net penalty using an adaptively bounded
gradient descent (ABGD) algorithm (Helwig, 2025). Predictor groups can be manually input (de-
fault S3 method) or inferred from the model (S3 "formula" method). The regularization path is
computed at a data-generated (default) or user-provided sequence of lambda values.

Usage

grpnet(x, ...)

Default S3 method:
grpnet(x,

y,
group,
family = c("gaussian", "multigaussian",

"svm1", "svm2", "logit",
"binomial", "multinomial", "ordinal",
"poisson", "negative.binomial",
"Gamma", "inverse.gaussian"),

weights = NULL,
offset = NULL,
alpha = 1,
nlambda = 100,
lambda.min.ratio = ifelse(nobs < nvars, 0.05, 0.0001),
lambda = NULL,
penalty.factor = NULL,
penalty = c("LASSO", "MCP", "SCAD"),
gamma = 4,
theta = 1,
standardized = !orthogonalized,
orthogonalized = TRUE,
intercept = TRUE,
thresh = 1e-04,
maxit = 1e05,
proglang = c("Fortran", "R"),
standardize.response = FALSE,

grpnet 19

...)

S3 method for class 'formula'
grpnet(formula,

data,
use.rk = TRUE,
family = c("gaussian", "multigaussian",

"svm1", "svm2", "logit",
"binomial", "multinomial", "ordinal",
"poisson", "negative.binomial",
"Gamma", "inverse.gaussian"),

weights = NULL,
offset = NULL,
alpha = 1,
nlambda = 100,
lambda.min.ratio = ifelse(nobs < nvars, 0.05, 0.0001),
lambda = NULL,
penalty.factor = NULL,
penalty = c("LASSO", "MCP", "SCAD"),
gamma = 4,
theta = 1,
standardized = !orthogonalized,
orthogonalized = TRUE,
thresh = 1e-04,
maxit = 1e05,
proglang = c("Fortran", "R"),
standardize.response = FALSE,
...)

Arguments

x Model (design) matrix of dimension nobs by nvars (n× p).

y Response vector of length n or matrix of dimension n × m. Note that matrix
inputs are (i) required for multigaussian family, (ii) allowed for binomial and
multinomial families (see "Binomial and multinomial" section in grpnet), and
(iii) not permitted for other families.

group Group label vector (factor, character, or integer) of length p. Predictors with the
same label are grouped together for regularization.

formula Model formula: a symbolic description of the model to be fitted. Uses the same
syntax as lm and glm.

data Optional data frame containing the variables referenced in formula.

use.rk If TRUE (default), the rk.model.matrix function is used to build the model ma-
trix. Otherwise, the model.matrix function is used to build the model matrix.
Additional arguments to the rk.model.matrix function can be passed via the
... argument.

family Character specifying the assumed distribution for the response variable. Par-
tial matching is allowed. Options include "gaussian" (real-valued vector),

20 grpnet

"multigaussian" (real-valued matrix), "svm1" (binary response), "svm2" (bi-
nary response), "logit" (binary response), "binomial" (binary response), "multinomial"
(multi-class response), "poisson" (count response), "negative.binomial" (count
response), "Gamma" (positive real-valued), or "inverse.gaussian" (positive
real-valued).

weights Optional vector of length n with non-negative weights to use for weighted (pe-
nalized) likelihood estimation. Defaults to a vector of ones.

offset Optional vector of length n with an a priori known term to be included in the
model’s linear predictor. Defaults to a vector of zeros.

alpha Regularization hyperparameter satisfying 0 ≤ α ≤ 1 that gives the balance
between the group L1 (lasso) and group L2 (ridge) penalty. Setting α = 1 uses
a group lasso penalty, setting α = 0 uses a group ridge penalty, and setting
0 < α < 1 uses a group elastic net group penalty.

nlambda Number of λ values to use in the regularization path. Ignored if lambda is
provided.

lambda.min.ratio

The proportion 0 < π < 1 that defines the minimum regularization parameter
λmin as a fraction of the maximum regularization parameter λmax via the re-
lationship λmin = πλmax. Ignored if lambda is provided. Note that λmax is
defined such that all penalized effects are shrunk to zero.

lambda Optional vector of user-supplied regularization parameter values.

penalty.factor Default S3 method: vector of length K giving the non-negative penalty weight
for each predictor group. The order of the weights should correspond to the
order of levels(as.factor(group)). Defaults to

√
pk for all k = 1, . . . ,K,

where pk is the number of coefficients in the k-th group. If penalty.factor[k]
= 0, then the k-th group is unpenalized, and the corresponding term is always
included in the model.
S3 "formula" method: named list giving the non-negative penalty weight for
terms specified in the formula. Incomplete lists are allowed. Any term that is
specified in formula but not in penalty.factor will be assigned the default
penalty weight of

√
pk. If penalty.factor$z = 0, then the variable z is unpe-

nalized and always included in the model.

penalty Character specifying which (group) penalty to use: LASSO , MCP, or SCAD.

gamma Penalty hyperparameter that satisfies γ > 1 for MCP and γ > 2 for SCAD.
Ignored for LASSO penalty.

theta For SVM1: additional ("smoothing") parameter, that controls the smoothing rate
of the hinge loss function. For negative binomial: additional ("size") parameter,
where the variance function is defined as V (µ) = µ+ µ2/θ

standardized Logical indicating whether the predictors should be groupwise standardized. If
TRUE, each column of x is mean-centered and each predictor group’s design ma-
trix is scaled to have a mean-square of one before fitting the model. Regardless
of whether standardization is used, the coefficients are always returned on the
original data scale.

orthogonalized Logical indicating whether the predictors should be groupwise orthogonalized.
If TRUE (default), each predictor group’s design matrix is orthonormalized (i.e.,

grpnet 21

X⊤
k Xk = nIk) before fitting the model. Regardless of whether orthogonaliza-

tion is used, the coefficients are always returned on the original data scale.

intercept Logical indicating whether an intercept term should be included in the model.
Note that the intercept is always unpenalized.

thresh Convergence threshold (tolerance). The algorithm is determined to have con-
verged once the maximum relative change in the coefficients is below this thresh-
old. See "Convergence" section.

maxit Maximum number of iterations to allow.

proglang Which programming language should be used to implement the ABGD algo-
rithm? Options include "Fortran" (default) or "R".

standardize.response

Should columns of response be standardized to have unit variance before fitting
the model? Only applicable when family = "multigaussian". Note that co-
efficients are returned on the original (unstandardized) scale regardless of this
input.

... Additional arguments used by the default or formula method.

Details

Consider a generalized linear model of the form

g(µ) = X⊤β

where µ = E(Y |X) is the conditional expectation of the response Y given the predictor vector X,
the function g(·) is a user-specified (invertible) link function, and β are the unknown regression
coefficients. Furthermore, suppose that the predictors are grouped, such as

X⊤β =

K∑
k=1

X⊤
k βk

where X = (X1, . . . ,XK) is the grouped predictor vector, and β = (β1, . . . ,βK) is the grouped
coefficient vector.

Given n observations, this function finds the β that minimizes

L(β|D) + λPα(β)

where L(β|D) is the loss function with D = {y,X} denoting the observed data, Pα(β) is the
group elastic net penalty, and λ ≥ 0 is the regularization parameter.

The loss function has the form

L(β|D) =
1

n

n∑
i=1

wiℓi(β|Di)

where wi > 0 are the user-supplied weights, and ℓi(β|Di) is the i-th observation’s contribution
to the loss function. Note that ℓ(·) = − log(fY (·)) denotes the negative log-likelihood function for
the given family.

22 grpnet

The group elastic net penalty function has the form

Pα(β) = αP1(β) + (1− α)P2(β)

where α ∈ [0, 1] is the user-specified alpha value,

P1(β) =

K∑
k=1

ωk∥βk∥

is the group lasso penalty with ωk ≥ 0 denoting the k-th group’s penalty.factor, and

P2(β) =
1

2

K∑
k=1

ωk∥βk∥2

is the group ridge penalty. Note that ∥βk∥2 = β⊤
k βk denotes the squared Euclidean norm. When

penalty %in% c("MCP", "SCAD"), the group L1 penalty P1(β) is replaced by the group MCP or
group SCAD penalty.

Value

An object of class "grpnet" with the following elements:

call matched call
a0 intercept sequence of length nlambda

beta coefficient matrix of dimension nvars by nlambda

alpha balance between the group L1 (lasso) and group L2 (ridge) penalty
lambda sequence of regularization parameter values
family exponential family defining the loss function
dev.ratio proportion of (null) deviance explained for each lambda (= 1 - dev / nulldev)
nulldev null deviance for each lambda

df effective degrees of freedom for each lambda

nzgrp number of non-zero groups for each lambda

nzcoef number of non-zero coefficients for each lambda

xsd standard deviation of x for each group
ylev levels of response variable (only for binomial and multinomial families)
nobs number of observations
group group label vector
ngroups number of groups K
npasses number of iterations for each lambda

time runtime in seconds to compute regularization path
offset logical indicating if an offset was included
args list of input argument values
formula input formula (possibly after expansion)
term.labels terms that appear in formula (if applicable)
rk.args arguments for rk.model.matrix function (if applicable)

grpnet 23

S3 "formula" method

Important: When using the S3 "formula" method, the S3 "predict" method forms the model matrix
for the predictions by applying the model formula to the new data. As a result, to ensure that the
corresponding S3 "predict" method works correctly, some formulaic features should be avoided.

Polynomials: When including polynomial terms, the poly function should be used with option raw
= TRUE. Default use of the poly function (with raw = FALSE) will work for fitting the model, but
will result in invalid predictions for new data. Polynomials can also be included via the I function,
but this isn’t recommended because the polynomials terms wouldn’t be grouped together, i.e., the
terms x and I(x^2) would be treated as two separate groups of size one instead of a single group
of size two.

Splines: B-splines (and other spline bases) can be included via the S3 "formula" method. How-
ever, to ensure reasonable predictions for new data, it is necessary to specify the knots directly.
For example, if x is a vector with entries between zero and one, the code bs(x, df = 5) will
not produce valid predictions for new data, but the code bs(x, knots = c(0.25, 0.5, 0.75),
Boundary.knots = c(0, 1)) will work as intended. Instead of attempting to integrate a call to
bs() or rk() into the model formula, it is recommended that splines be included via the use.rk =
TRUE argument.

Family argument and link functions

Unlike the glm function, the family argument of the grpnet function
* should be a character vector (not a family object)
* does not allow for specification of a link function

Currently, there is only one available link function for each family:
* gaussian (identity): µ = X⊤β
* multigaussian (identity): µ = X⊤β
* svm1/svm2 (identity): µ = X⊤β
* binomial/logit (logit): log(π

1−π) = X⊤β

* multinomial (symmetric): πℓ =
exp(X⊤βℓ)∑m
l=1 exp(X⊤βl)

* poisson (log): log(µ) = X⊤β
* negative.binomial (log): log(µ) = X⊤β
* Gamma (log): log(µ) = X⊤β
* inverse.gaussian (log): log(µ) = X⊤β

Classification problems (svm1/svm2/logit/binomial/multinomial)

For "svm1", "svm2", and "logit" responses, three different possibilities exist for the input re-
sponse:
1. vector coercible into a factor with two levels
2. matrix with two columns (# successes, # failures)
3. numeric vector with entries between -1 and 1
In this case, the weights argument should be used specify the total number of trials.

For "binomial" responses, three different possibilities exist for the input response:
1. vector coercible into a factor with two levels
2. matrix with two columns (# successes, # failures)

24 grpnet

3. numeric vector with entries between 0 and 1
In this case, the weights argument should be used specify the total number of trials.

For "multinomial" responses, two different possibilities exist for the input response:
1. vector coercible into a factor with more than two levels
2. matrix of integers (counts) for each category level

Convergence

The algorithm is determined to have converged once

maxj
|βj−βold

j |
1+|βold

j | < ϵ

where j ∈ {1, . . . , p} and ϵ is the thresh argument.

Note

The syntax of (the default S3 method for) this function closely mimics that of the glmnet function
in the glmnet package (Friedman, Hastie, & Tibshirani, 2010).

Author(s)

Nathaniel E. Helwig <helwig@umn.edu>

References

Friedman, J., Hastie, T., & Tibshirani, R. (2010). Regularization paths for generalized linear models
via coordinate descent. Journal of Statistical Software, 33(1), 1-22. doi:10.18637/jss.v033.i01

Helwig, N. E. (2025). Versatile descent algorithms for group regularization and variable selection
in generalized linear models. Journal of Computational and Graphical Statistics, 34(1), 239-252.
doi:10.1080/10618600.2024.2362232

See Also

plot.grpnet for plotting the regularization path

predict.grpnet for predicting from grpnet objects

cv.grpnet for k-fold cross-validation of lambda

Examples

######***###### family = "gaussian" ######***######

load data
data(auto)

fit model (formula method, response = mpg)
mod <- grpnet(mpg ~ ., data = auto)

print regularization path info
mod

https://doi.org/10.18637/jss.v033.i01
https://doi.org/10.1080/10618600.2024.2362232

grpnet 25

plot proportion of null deviance explained
plot(mod)

######***###### family = "multigaussian" ######***######

load data
data(auto)

fit model (formula method, response = (mpg, displacement))
y <- as.matrix(auto[,c(1,3)])
mod <- grpnet(y ~ ., data = auto[,-c(1,3)], family = "multigaussian",

standardize.response = TRUE)

print regularization path info
mod

plot proportion of null deviance explained
plot(mod)

######***###### family = "svm1" ######***######

load data
data(auto)

redefine origin (Domestic vs Foreign)
auto$origin <- ifelse(auto$origin == "American", "Domestic", "Foreign")

fit model (formula method, response = origin with 2 levels)
mod <- grpnet(origin ~ ., data = auto, family = "svm1")

print regularization path info
mod

plot proportion of null deviance explained
plot(mod)

######***###### family = "svm2" ######***######

load data
data(auto)

redefine origin (Domestic vs Foreign)
auto$origin <- ifelse(auto$origin == "American", "Domestic", "Foreign")

fit model (formula method, response = origin with 2 levels)
mod <- grpnet(origin ~ ., data = auto, family = "svm2")

26 grpnet

print regularization path info
mod

plot proportion of null deviance explained
plot(mod)

######***###### family = "logit" ######***######

load data
data(auto)

redefine origin (Domestic vs Foreign)
auto$origin <- ifelse(auto$origin == "American", "Domestic", "Foreign")

fit model (formula method, response = origin with 2 levels)
mod <- grpnet(origin ~ ., data = auto, family = "logit")

print regularization path info
mod

plot proportion of null deviance explained
plot(mod)

######***###### family = "binomial" ######***######

load data
data(auto)

redefine origin (Domestic vs Foreign)
auto$origin <- ifelse(auto$origin == "American", "Domestic", "Foreign")

fit model (formula method, response = origin with 2 levels)
mod <- grpnet(origin ~ ., data = auto, family = "binomial")

print regularization path info
mod

plot proportion of null deviance explained
plot(mod)

######***###### family = "multinomial" ######***######

load data
data(auto)

fit model (formula method, response = origin with 3 levels)

grpnet 27

mod <- grpnet(origin ~ ., data = auto, family = "multinomial")

print regularization path info
mod

plot proportion of null deviance explained
plot(mod)

######***###### family = "ordinal" ######***######

load data
data(auto)

fit model (formula method, response = cylinders with 5 levels)
mod <- grpnet(cylinders ~ ., data = auto, family = "ordinal")

print regularization path info
mod

plot proportion of null deviance explained
plot(mod)

######***###### family = "poisson" ######***######

load data
data(auto)

fit model (formula method, response = horsepower)
mod <- grpnet(horsepower ~ ., data = auto, family = "poisson")

print regularization path info
mod

plot proportion of null deviance explained
plot(mod)

######***###### family = "negative.binomial" ######***######

load data
data(auto)

fit model (formula method, response = horsepower)
mod <- grpnet(horsepower ~ ., data = auto, family = "negative.binomial")

print regularization path info
mod

28 plot.cv.grpnet

plot proportion of null deviance explained
plot(mod)

######***###### family = "Gamma" ######***######

load data
data(auto)

fit model (formula method, response = mpg)
mod <- grpnet(mpg ~ ., data = auto, family = "Gamma")

print regularization path info
mod

plot proportion of null deviance explained
plot(mod)

######***###### family = "inverse.gaussian" ######***######

load data
data(auto)

fit model (formula method, response = mpg)
mod <- grpnet(mpg ~ ., data = auto, family = "inverse.gaussian")

print regularization path info
mod

plot proportion of null deviance explained
plot(mod)

plot.cv.grpnet Plot Cross-Validation Curve for cv.grpnet Fits

Description

Plots the mean cross-validation error, along with lower and upper standard deviation curves, as a
function of log(lambda).

Usage

S3 method for class 'cv.grpnet'
plot(x, sign.lambda = 1, nzero = TRUE, ...)

plot.cv.grpnet 29

Arguments

x Object of class "cv.grpnet"

sign.lambda Default plots log(lambda) on the x-axis. Set to -1 to plot -1*log(lambda) on
the x-axis instead.

nzero Should the number of non-zero groups be printed on the top of the x-axis?

... Additional arguments passed to the plot function.

Details

Produces cross-validation plot only (i.e., nothing is returned).

Value

No return value (produces a plot)

Note

Syntax and functionality were modeled after the plot.cv.glmnet function in the glmnet package
(Friedman, Hastie, & Tibshirani, 2010).

Author(s)

Nathaniel E. Helwig <helwig@umn.edu>

References

Friedman, J., Hastie, T., & Tibshirani, R. (2010). Regularization paths for generalized linear models
via coordinate descent. Journal of Statistical Software, 33(1), 1-22. doi:10.18637/jss.v033.i01

Helwig, N. E. (2025). Versatile descent algorithms for group regularization and variable selection
in generalized linear models. Journal of Computational and Graphical Statistics, 34(1), 239-252.
doi:10.1080/10618600.2024.2362232

See Also

cv.grpnet for k-fold cross-validation of lambda

plot.grpnet for plotting the regularization path

Examples

see 'cv.grpnet' for plotting examples
?cv.grpnet

https://doi.org/10.18637/jss.v033.i01
https://doi.org/10.1080/10618600.2024.2362232

30 plot.grpnet

plot.grpnet Plot Regularization Path for grpnet Fits

Description

Creates a profile plot of the reguarlization paths for a fit group elastic net regularized GLM (grpnet)
object.

Usage

S3 method for class 'grpnet'
plot(x, type = c("dev.ratio", "coef", "imp", "norm", "znorm"),

newx, newdata, intercept = FALSE,
color.by.group = TRUE, col = NULL, ...)

Arguments

x Object of class "grpnet"

type What to plot on the Y-axis: "dev.ratio" for explained deviance, "coef" for co-
efficient values, "imp" for importance of each group’s contribution, "norm" for
L2 norm of coefficients for each group, or "znorm" for L2 norm of standardized
coefficients for each group.

newx Matrix of new x scores for prediction (default S3 method). Ignored unless type
= "imp".

newdata Data frame of new data scores for prediction (S3 "formula" method). Ignored
unless type = "imp".

intercept Should the intercept be included in the plot?

color.by.group If TRUE (default), the coefficient paths are colored according to their group mem-
bership using the colors in col. If FALSE, all coefficient paths are plotted the
same color.

col If color.by.group = TRUE, this should be a vector of length K giving a color
label for each group. If color.by.group = FASLE, this should be a character
specifying a single (common) color. Default of col = NULL is the same as col =
1:K or col = "black".

... Additional arguments passed to the plot function.

Details

Syntax and functionality were modeled after the plot.glmnet function in the glmnet package
(Friedman, Hastie, & Tibshirani, 2010).

Value

Produces a profile plot showing the requested type (y-axis) as a function of log(lambda) (x-axis).

predict.cv.grpnet 31

Note

If x is a multigaussian or multinomial model, the coefficients for each response dimension/class are
plotted in a separate plot.

Author(s)

Nathaniel E. Helwig <helwig@umn.edu>

References

Friedman, J., Hastie, T., & Tibshirani, R. (2010). Regularization paths for generalized linear models
via coordinate descent. Journal of Statistical Software, 33(1), 1-22. doi:10.18637/jss.v033.i01

Helwig, N. E. (2025). Versatile descent algorithms for group regularization and variable selection
in generalized linear models. Journal of Computational and Graphical Statistics, 34(1), 239-252.
doi:10.1080/10618600.2024.2362232

See Also

grpnet for fitting grpnet regularization paths

plot.cv.grpnet for plotting cv.grpnet objects

Examples

see 'grpnet' for plotting examples
?grpnet

predict.cv.grpnet Predict Method for cv.grpnet Fits

Description

Obtain predictions from a cross-validated group elastic net regularized GLM (cv.grpnet) object.

Usage

S3 method for class 'cv.grpnet'
predict(object,

newx,
newdata,
s = c("lambda.1se", "lambda.min"),
type = c("link", "response", "class", "terms",

"importance", "coefficients", "nonzero", "groups",
"ncoefs", "ngroups", "norm", "znorm"),

...)

https://doi.org/10.18637/jss.v033.i01
https://doi.org/10.1080/10618600.2024.2362232

32 predict.cv.grpnet

Arguments

object Object of class "cv.grpnet"

newx Matrix of new x scores for prediction (default S3 method). Must have p columns
arranged in the same order as the x matrix used to fit the model.

newdata Data frame of new data scores for prediction (S3 "formula" method). Must
contain all variables in the formula used to fit the model.

s Lambda value(s) at which predictions should be obtained. Can input a character
("lambda.min" or "lambda.1se") or a numeric vector. Default of "lambda.min"
uses the lambda value that minimizes the mean cross-validated error.

type Type of prediction to return. "link" gives predictions on the link scale (η). "re-
sponse" gives predictions on the mean scale (µ). "class" gives predicted class
labels (for "binomial" and "multinomial" families). "terms" gives the predic-
tions for each term (group) in the model (ηk). "importance" gives the variable
importance index for each term (group) in the model. "coefficients" returns the
coefficients used for predictions. "nonzero" returns a list giving the indices of
non-zero coefficients for each s. "groups" returns a list giving the labels of non-
zero groups for each s. "ncoefs" returns the number of non-zero coefficients for
each s. "ngroups" returns the number of non-zero groups for each s. "norm" re-
turns the L2 norm of each group’s (raw) coefficients for each s. "znorm" returns
the L2 norm of each group’s standardized coefficients for each s.

... Additional arguments (ignored)

Details

Predictions are calculated from the grpnet object fit to the full sample of data, which is stored as
object$grpnet.fit

See predict.grpnet for further details on the calculation of the different types of predictions.

Value

Depends on three factors...
1. the exponential family distribution
2. the length of the input s
3. the type of prediction requested

See predict.grpnet for details

Note

Syntax is inspired by the predict.cv.glmnet function in the glmnet package (Friedman, Hastie,
& Tibshirani, 2010).

Author(s)

Nathaniel E. Helwig <helwig@umn.edu>

predict.cv.grpnet 33

References

Friedman, J., Hastie, T., & Tibshirani, R. (2010). Regularization paths for generalized linear models
via coordinate descent. Journal of Statistical Software, 33(1), 1-22. doi:10.18637/jss.v033.i01

Helwig, N. E. (2025). Versatile descent algorithms for group regularization and variable selection
in generalized linear models. Journal of Computational and Graphical Statistics, 34(1), 239-252.
doi:10.1080/10618600.2024.2362232

See Also

cv.grpnet for k-fold cross-validation of lambda

predict.grpnet for predicting from grpnet objects

Examples

######***###### family = "gaussian" ######***######

load data
data(auto)

10-fold cv (formula method, response = mpg)
set.seed(1)
mod <- cv.grpnet(mpg ~ ., data = auto)

get fitted values at "lambda.1se"
fit.1se <- predict(mod, newdata = auto)

get fitted values at "lambda.min"
fit.min <- predict(mod, newdata = auto, s = "lambda.min")

compare mean absolute error for two solutions
mean(abs(auto$mpg - fit.1se))
mean(abs(auto$mpg - fit.min))

######***###### family = "multigaussian" ######***######

load data
data(auto)

10-fold cv (formula method, response = (mpg, displacement))
y <- as.matrix(auto[,c(1,3)])
set.seed(1)
mod <- cv.grpnet(y ~ ., data = auto[,-c(1,3)], family = "multigaussian",

standardize.response = TRUE)

get fitted values at "lambda.1se"
fit.1se <- predict(mod, newdata = auto)

get fitted values at "lambda.min"
fit.min <- predict(mod, newdata = auto, s = "lambda.min")

https://doi.org/10.18637/jss.v033.i01
https://doi.org/10.1080/10618600.2024.2362232

34 predict.cv.grpnet

compare mean absolute error for two solutions
mean(abs(y - fit.1se))
mean(abs(y - fit.min))

######***###### family = "svm1" ######***######

load data
data(auto)

redefine origin (Domestic vs Foreign)
auto$origin <- ifelse(auto$origin == "American", "Domestic", "Foreign")

fit model (formula method, response = origin with 2 levels)
set.seed(1)
mod <- cv.grpnet(origin ~ ., data = auto, family = "svm1")

get predicted classes at "lambda.1se"
fit.1se <- predict(mod, newdata = auto, type = "class")

get predicted classes at "lambda.min"
fit.min <- predict(mod, newdata = auto, type = "class", s = "lambda.min")

compare misclassification rate for two solutions
1 - mean(auto$origin == fit.1se)
1 - mean(auto$origin == fit.min)

######***###### family = "svm2" ######***######

load data
data(auto)

redefine origin (Domestic vs Foreign)
auto$origin <- ifelse(auto$origin == "American", "Domestic", "Foreign")

fit model (formula method, response = origin with 2 levels)
set.seed(1)
mod <- cv.grpnet(origin ~ ., data = auto, family = "svm2")

get predicted classes at "lambda.1se"
fit.1se <- predict(mod, newdata = auto, type = "class")

get predicted classes at "lambda.min"
fit.min <- predict(mod, newdata = auto, type = "class", s = "lambda.min")

compare misclassification rate for two solutions
1 - mean(auto$origin == fit.1se)
1 - mean(auto$origin == fit.min)

predict.cv.grpnet 35

######***###### family = "logit" ######***######

load data
data(auto)

redefine origin (Domestic vs Foreign)
auto$origin <- ifelse(auto$origin == "American", "Domestic", "Foreign")

fit model (formula method, response = origin with 2 levels)
set.seed(1)
mod <- cv.grpnet(origin ~ ., data = auto, family = "logit")

get predicted classes at "lambda.1se"
fit.1se <- predict(mod, newdata = auto, type = "class")

get predicted classes at "lambda.min"
fit.min <- predict(mod, newdata = auto, type = "class", s = "lambda.min")

compare misclassification rate for two solutions
1 - mean(auto$origin == fit.1se)
1 - mean(auto$origin == fit.min)

######***###### family = "binomial" ######***######

load data
data(auto)

redefine origin (Domestic vs Foreign)
auto$origin <- ifelse(auto$origin == "American", "Domestic", "Foreign")

10-fold cv (default method, response = origin with 2 levels)
set.seed(1)
mod <- cv.grpnet(origin ~ ., data = auto, family = "binomial")

get predicted classes at "lambda.1se"
fit.1se <- predict(mod, newdata = auto, type = "class")

get predicted classes at "lambda.min"
fit.min <- predict(mod, newdata = auto, type = "class", s = "lambda.min")

compare misclassification rate for two solutions
1 - mean(auto$origin == fit.1se)
1 - mean(auto$origin == fit.min)

######***###### family = "multinomial" ######***######

load data

36 predict.cv.grpnet

data(auto)

10-fold cv (formula method, response = origin with 3 levels)
set.seed(1)
mod <- cv.grpnet(origin ~ ., data = auto, family = "multinomial")

get predicted classes at "lambda.1se"
fit.1se <- predict(mod, newdata = auto, type = "class")

get predicted classes at "lambda.min"
fit.min <- predict(mod, newdata = auto, type = "class", s = "lambda.min")

compare misclassification rate for two solutions
1 - mean(auto$origin == fit.1se)
1 - mean(auto$origin == fit.min)

######***###### family = "ordinal" ######***######

load data
data(auto)

10-fold cv (formula method, response = cylinders with 5 levels)
set.seed(1)
mod <- cv.grpnet(cylinders ~ ., data = auto, family = "ordinal")

get predicted classes at "lambda.1se"
fit.1se <- predict(mod, newdata = auto, type = "class")

get predicted classes at "lambda.min"
fit.min <- predict(mod, newdata = auto, type = "class", s = "lambda.min")

compare misclassification rate for two solutions
1 - mean(auto$cylinders == fit.1se)
1 - mean(auto$cylinders == fit.min)

######***###### family = "poisson" ######***######

load data
data(auto)

10-fold cv (formula method, response = horsepower)
set.seed(1)
mod <- cv.grpnet(horsepower ~ ., data = auto, family = "poisson")

get fitted values at "lambda.1se"
fit.1se <- predict(mod, newdata = auto, type = "response")

get fitted values at "lambda.min"
fit.min <- predict(mod, newdata = auto, type = "response", s = "lambda.min")

predict.cv.grpnet 37

compare mean absolute error for two solutions
mean(abs(auto$horsepower - fit.1se))
mean(abs(auto$horsepower - fit.min))

######***###### family = "negative.binomial" ######***######

load data
data(auto)

10-fold cv (formula method, response = horsepower)
set.seed(1)
mod <- cv.grpnet(horsepower ~ ., data = auto, family = "negative.binomial")

get fitted values at "lambda.1se"
fit.1se <- predict(mod, newdata = auto, type = "response")

get fitted values at "lambda.min"
fit.min <- predict(mod, newdata = auto, type = "response", s = "lambda.min")

compare mean absolute error for two solutions
mean(abs(auto$horsepower - fit.1se))
mean(abs(auto$horsepower - fit.min))

######***###### family = "Gamma" ######***######

load data
data(auto)

10-fold cv (formula method, response = origin)
set.seed(1)
mod <- cv.grpnet(mpg ~ ., data = auto, family = "Gamma")

get fitted values at "lambda.1se"
fit.1se <- predict(mod, newdata = auto, type = "response")

get fitted values at "lambda.min"
fit.min <- predict(mod, newdata = auto, type = "response", s = "lambda.min")

compare mean absolute error for two solutions
mean(abs(auto$mpg - fit.1se))
mean(abs(auto$mpg - fit.min))

######***###### family = "inverse.gaussian" ######***######

load data
data(auto)

38 predict.grpnet

10-fold cv (formula method, response = origin)
set.seed(1)
mod <- cv.grpnet(mpg ~ ., data = auto, family = "inverse.gaussian")

get fitted values at "lambda.1se"
fit.1se <- predict(mod, newdata = auto, type = "response")

get fitted values at "lambda.min"
fit.min <- predict(mod, newdata = auto, type = "response", s = "lambda.min")

compare mean absolute error for two solutions
mean(abs(auto$mpg - fit.1se))
mean(abs(auto$mpg - fit.min))

predict.grpnet Predict Method for grpnet Fits

Description

Obtain predictions from a fit group elastic net regularized GLM (grpnet) object.

Usage

S3 method for class 'grpnet'
predict(object,

newx,
newdata,
s = NULL,
type = c("link", "response", "class", "terms",

"importance", "coefficients", "nonzero", "groups",
"ncoefs", "ngroups", "norm", "znorm"),

...)

Arguments

object Object of class "grpnet"

newx Matrix of new x scores for prediction (default S3 method). Must have p columns
arranged in the same order as the x matrix used to fit the model. Ignored for the
last six types of predictions.

newdata Data frame of new data scores for prediction (S3 "formula" method). Must
contain all variables in the formula used to fit the model. Ignored for the last
six types of predictions.

s Lambda value(s) at which predictions should be obtained. Default uses s =
object$lambda. Interpolation is used for s values that are not included in
object$lambda.

predict.grpnet 39

type Type of prediction to return. "link" gives predictions on the link scale (η). "re-
sponse" gives predictions on the mean scale (µ). "class" gives predicted class
labels (for "binomial" and "multinomial" families). "terms" gives the predic-
tions for each term (group) in the model (ηk). "importance" gives the variable
importance index for each term (group) in the model. "coefficients" returns the
coefficients used for predictions. "nonzero" returns a list giving the indices of
non-zero coefficients for each s. "groups" returns a list giving the labels of non-
zero groups for each s. "ncoefs" returns the number of non-zero coefficients for
each s. "ngroups" returns the number of non-zero groups for each s. "norm" re-
turns the L2 norm of each group’s (raw) coefficients for each s. "znorm" returns
the L2 norm of each group’s standardized coefficients for each s.

... Additional arguments (ignored)

Details

When type == "link", the predictions for each λ have the form

ηλ = Xnewβλ

where Xnew is the argument newx (or the design matrix created from newdata by applying object$formula)
and βλ is the coefficient vector corresponding to λ.

When type == "response", the predictions for each λ have the form

µλ = g−1(ηλ)

where g−1(·) is the inverse link function stored in object$family$linkinv.

When type == "class", the predictions for each λ have the form

yλ = argmax
l

µλ(l)

where µλ(l) gives the predicted probability that each observation belongs to the l-th category (for
l = 1, . . . ,m) using the regularization parameter λ.

When type == "terms", the groupwise predictions for each λ have the form

ηkλ = X
(new)
k βkλ

where X
(new)
k is the portion of the argument newx (or the design matrix created from newdata by

applying object$formula) that corresponds to the k-th term/group, and βkλ are the corresponding
coefficients.

When type == "importance", the variable importance indices are defined as

πk =
(
η⊤
kλCη0λ

) (
η⊤
0λCη0λ

)−1

where C = (In− 1
n1n1

⊤
n) denotes a centering matrix, and η0λ =

∑K
k=1 ηkλ. Note that

∑K
k=1 πk =

1, but some πk could be negative. When they are positive, πk gives the approximate proportion of
model (explained) variation that is attributed to the k-th term.

40 predict.grpnet

Value

Depends on three factors...
1. the exponential family distribution
2. the length of the input s
3. the type of prediction requested

For most response variables, the typical output will be...

* a matrix of dimension c(newnobs, length(s)) if length(s) > 1

* a vector of length newnobs if length(s) == 1

For multigaussian and multinomial response variables, the typical output will be...

* an array of dimension c(newnobs, length(object$ylev), length(s)) if type
%in% c("link", "response")

* a matrix of dimension c(newobs, length(s)) if type == "class"

Note: if type == "class", then the output will be the same class as object$ylev. Otherwise, the
output will be real-valued (or integer for the counts).

If type == "terms" and !(family %in% c("multigaussian","multinomial")), the output will
be...

* an array of dimension c(newnobs, nterms, length(s)) if length(s) > 1

* a matrix of dimension c(newnobs, nterms) if length(s) == 1

If type == "terms" and family %in% c("multigaussian","multinomial"), the output will be
a list of length length(object$ylev) where each element gives the terms for the corresponding
response dimension/class.

If type == "importance" and family != "multinomial", the output will be...

* a matrix of dimension c(nterms, length(s)) if length(s) > 1

* a vector of length nterms if length(s) == 1

If type == "importance" and family == "multinomial", the output will be a list of length length(object$ylev)
where each element gives the importance for the corresponding response class. If length(s) == 1,
the output will be simplified to matrix.

If type == "coefficients", the output will be the same as that produced by coef.grpnet.

If type == "nonzero", the output will be a list of length length(s) where each element is a vector
of integers (indices).

If type == "groups", the output will be a list of length length(s) where each element is a vector
of characters (term.labels).

If type %in% c("ncoefs", "ngroups"), the output will be a vector of length length(s) where
each element is an integer.

If type == "norm", the output will be a matrix of dimension c(K, length(s)), where each cell
gives the L2 norm for the corresponding group and smoothing parameter. Note that K denotes the
number of groups.

predict.grpnet 41

Note

Some internal code (e.g., used for the interpolation) is borrowed from the predict.glmnet function
in the glmnet package (Friedman, Hastie, & Tibshirani, 2010).

Author(s)

Nathaniel E. Helwig <helwig@umn.edu>

References

Friedman, J., Hastie, T., & Tibshirani, R. (2010). Regularization paths for generalized linear models
via coordinate descent. Journal of Statistical Software, 33(1), 1-22. doi:10.18637/jss.v033.i01

Helwig, N. E. (2025). Versatile descent algorithms for group regularization and variable selection
in generalized linear models. Journal of Computational and Graphical Statistics, 34(1), 239-252.
doi:10.1080/10618600.2024.2362232

See Also

grpnet for fitting grpnet regularization paths

predict.cv.grpnet for predicting from cv.grpnet objects

Examples

######***###### family = "gaussian" ######***######

load data
data(auto)

fit model (formula method, response = mpg)
mod <- grpnet(mpg ~ ., data = auto)

get fitted values for regularization path (output = 392 x 100 matrix)
fit.path <- predict(mod, newdata = auto)

get fitted values at 3 particular points (output = 392 x 3 matrix)
lam <- quantile(mod$lambda, probs = c(0.25, 0.5, 0.75))
fit.some <- predict(mod, newdata = auto, s = lam)

compare rmse for solutions
rmse.path <- sqrt(colMeans((auto$mpg - fit.path)^2))
rmse.some <- sqrt(colMeans((auto$mpg - fit.some)^2))
plot(log(mod$lambda), rmse.path, cex = 0.5)
points(log(lam), rmse.some, pch = 0, col = "red")

######***###### family = "multigaussian" ######***######

load data
data(auto)

https://doi.org/10.18637/jss.v033.i01
https://doi.org/10.1080/10618600.2024.2362232

42 predict.grpnet

fit model (formula method, response = (mpg, displacement))
y <- as.matrix(auto[,c(1,3)])
mod <- grpnet(y ~ ., data = auto[,-c(1,3)], family = "multigaussian",

standardize.response = TRUE)

get fitted values for regularization path (output = 392 x 2 x 100 array)
fit.path <- predict(mod, newdata = auto)

get fitted values at 3 particular points (output = 392 x 2 x 3 array)
lam <- quantile(mod$lambda, probs = c(0.25, 0.5, 0.75))
fit.some <- predict(mod, newdata = auto, s = lam)

compare rmse for solutions (mpg)
rmse1.path <- sqrt(colMeans((y[,1] - fit.path[,1,])^2))
rmse1.some <- sqrt(colMeans((y[,1] - fit.some[,1,])^2))
plot(log(mod$lambda), rmse1.path, cex = 0.5)
points(log(lam), rmse1.some, pch = 0, col = "red")

compare rmse for solutions (displacement)
rmse2.path <- sqrt(colMeans((y[,2] - fit.path[,2,])^2))
rmse2.some <- sqrt(colMeans((y[,2] - fit.some[,2,])^2))
plot(log(mod$lambda), rmse2.path, cex = 0.5)
points(log(lam), rmse2.some, pch = 0, col = "red")

######***###### family = "svm1" ######***######

load data
data(auto)

redefine origin (Domestic vs Foreign)
auto$origin <- ifelse(auto$origin == "American", "Domestic", "Foreign")

fit model (formula method, response = origin with 2 levels)
mod <- grpnet(origin ~ ., data = auto, family = "svm1")

get predicted classes for regularization path (output = 392 x 100 matrix)
fit.path <- predict(mod, newdata = auto, type = "class")

get predicted classes at 3 particular points (output = 392 x 3 matrix)
lam <- quantile(mod$lambda, probs = c(0.25, 0.5, 0.75))
fit.some <- predict(mod, newdata = auto, type = "class", s = lam)

compare misclassification rate for solutions
miss.path <- 1 - colMeans(auto$origin == fit.path)
miss.some <- 1 - colMeans(auto$origin == fit.some)
plot(log(mod$lambda), miss.path, cex = 0.5)
points(log(lam), miss.some, pch = 0, col = "red")

predict.grpnet 43

######***###### family = "svm2" ######***######

load data
data(auto)

redefine origin (Domestic vs Foreign)
auto$origin <- ifelse(auto$origin == "American", "Domestic", "Foreign")

fit model (formula method, response = origin with 2 levels)
mod <- grpnet(origin ~ ., data = auto, family = "svm2")

get predicted classes for regularization path (output = 392 x 100 matrix)
fit.path <- predict(mod, newdata = auto, type = "class")

get predicted classes at 3 particular points (output = 392 x 3 matrix)
lam <- quantile(mod$lambda, probs = c(0.25, 0.5, 0.75))
fit.some <- predict(mod, newdata = auto, type = "class", s = lam)

compare misclassification rate for solutions
miss.path <- 1 - colMeans(auto$origin == fit.path)
miss.some <- 1 - colMeans(auto$origin == fit.some)
plot(log(mod$lambda), miss.path, cex = 0.5)
points(log(lam), miss.some, pch = 0, col = "red")

######***###### family = "logit" ######***######

load data
data(auto)

redefine origin (Domestic vs Foreign)
auto$origin <- ifelse(auto$origin == "American", "Domestic", "Foreign")

fit model (formula method, response = origin with 2 levels)
mod <- grpnet(origin ~ ., data = auto, family = "logit")

get predicted classes for regularization path (output = 392 x 100 matrix)
fit.path <- predict(mod, newdata = auto, type = "class")

get predicted classes at 3 particular points (output = 392 x 3 matrix)
lam <- quantile(mod$lambda, probs = c(0.25, 0.5, 0.75))
fit.some <- predict(mod, newdata = auto, type = "class", s = lam)

compare misclassification rate for solutions
miss.path <- 1 - colMeans(auto$origin == fit.path)
miss.some <- 1 - colMeans(auto$origin == fit.some)
plot(log(mod$lambda), miss.path, cex = 0.5)
points(log(lam), miss.some, pch = 0, col = "red")

######***###### family = "binomial" ######***######

44 predict.grpnet

load data
data(auto)

redefine origin (Domestic vs Foreign)
auto$origin <- ifelse(auto$origin == "American", "Domestic", "Foreign")

fit model (formula method, response = origin with 2 levels)
mod <- grpnet(origin ~ ., data = auto, family = "binomial")

get predicted classes for regularization path (output = 392 x 100 matrix)
fit.path <- predict(mod, newdata = auto, type = "class")

get predicted classes at 3 particular points (output = 392 x 3 matrix)
lam <- quantile(mod$lambda, probs = c(0.25, 0.5, 0.75))
fit.some <- predict(mod, newdata = auto, type = "class", s = lam)

compare misclassification rate for solutions
miss.path <- 1 - colMeans(auto$origin == fit.path)
miss.some <- 1 - colMeans(auto$origin == fit.some)
plot(log(mod$lambda), miss.path, cex = 0.5)
points(log(lam), miss.some, pch = 0, col = "red")

######***###### family = "multinomial" ######***######

load data
data(auto)

fit model (formula method, response = origin with 3 levels)
mod <- grpnet(origin ~ ., data = auto, family = "multinomial")

get predicted classes for regularization path (output = 392 x 100 matrix)
fit.path <- predict(mod, newdata = auto, type = "class")

get predicted classes at 3 particular points (output = 392 x 3 matrix)
lam <- quantile(mod$lambda, probs = c(0.25, 0.5, 0.75))
fit.some <- predict(mod, newdata = auto, type = "class", s = lam)

compare misclassification rate for solutions
miss.path <- 1 - colMeans(auto$origin == fit.path)
miss.some <- 1 - colMeans(auto$origin == fit.some)
plot(log(mod$lambda), miss.path, cex = 0.5)
points(log(lam), miss.some, pch = 0, col = "red")

######***###### family = "ordinal" ######***######

load data
data(auto)

predict.grpnet 45

fit model (formula method, response = cylinders with 5 levels)
mod <- grpnet(cylinders ~ ., data = auto, family = "ordinal")

get fitted values for regularization path (output = 392 x 100 matrix)
fit.path <- predict(mod, newdata = auto, type = "class")

get fitted values at 3 particular points (output = 392 x 3 matrix)
lam <- quantile(mod$lambda, probs = c(0.25, 0.5, 0.75))
fit.some <- predict(mod, newdata = auto, type = "class", s = lam)

compare misclassification rate for solutions
miss.path <- 1 - colMeans(auto$cylinders == fit.path)
miss.some <- 1 - colMeans(auto$cylinders == fit.some)
plot(log(mod$lambda), miss.path, cex = 0.5)
points(log(lam), miss.some, pch = 0, col = "red")

######***###### family = "poisson" ######***######

load data
data(auto)

fit model (formula method, response = horsepower)
mod <- grpnet(horsepower ~ ., data = auto, family = "poisson")

get fitted values for regularization path (output = 392 x 100 matrix)
fit.path <- predict(mod, newdata = auto, type = "response")

get fitted values at 3 particular points (output = 392 x 3 matrix)
lam <- quantile(mod$lambda, probs = c(0.25, 0.5, 0.75))
fit.some <- predict(mod, newdata = auto, type = "response", s = lam)

compare rmse for solutions
rmse.path <- sqrt(colMeans((auto$horsepower - fit.path)^2))
rmse.some <- sqrt(colMeans((auto$horsepower - fit.some)^2))
plot(log(mod$lambda), rmse.path, cex = 0.5)
points(log(lam), rmse.some, pch = 0, col = "red")

######***###### family = "negative.binomial" ######***######

load data
data(auto)

fit model (formula method, response = horsepower)
mod <- grpnet(horsepower ~ ., data = auto, family = "negative.binomial")

get fitted values for regularization path (output = 392 x 100 matrix)
fit.path <- predict(mod, newdata = auto, type = "response")

get fitted values at 3 particular points (output = 392 x 3 matrix)

46 predict.grpnet

lam <- quantile(mod$lambda, probs = c(0.25, 0.5, 0.75))
fit.some <- predict(mod, newdata = auto, type = "response", s = lam)

compare rmse for solutions
rmse.path <- sqrt(colMeans((auto$horsepower - fit.path)^2))
rmse.some <- sqrt(colMeans((auto$horsepower - fit.some)^2))
plot(log(mod$lambda), rmse.path, cex = 0.5)
points(log(lam), rmse.some, pch = 0, col = "red")

######***###### family = "Gamma" ######***######

load data
data(auto)

fit model (formula method, response = mpg)
mod <- grpnet(mpg ~ ., data = auto, family = "Gamma")

get fitted values for regularization path (output = 392 x 100 matrix)
fit.path <- predict(mod, newdata = auto, type = "response")

get fitted values at 3 particular points (output = 392 x 3 matrix)
lam <- quantile(mod$lambda, probs = c(0.25, 0.5, 0.75))
fit.some <- predict(mod, newdata = auto, type = "response", s = lam)

compare rmse for solutions
rmse.path <- sqrt(colMeans((auto$mpg - fit.path)^2))
rmse.some <- sqrt(colMeans((auto$mpg - fit.some)^2))
plot(log(mod$lambda), rmse.path, cex = 0.5)
points(log(lam), rmse.some, pch = 0, col = "red")

######***###### family = "inverse.gaussian" ######***######

load data
data(auto)

fit model (formula method, response = mpg)
mod <- grpnet(mpg ~ ., data = auto, family = "inverse.gaussian")

get fitted values for regularization path (output = 392 x 100 matrix)
fit.path <- predict(mod, newdata = auto, type = "response")

get fitted values at 3 particular points (output = 392 x 3 matrix)
lam <- quantile(mod$lambda, probs = c(0.25, 0.5, 0.75))
fit.some <- predict(mod, newdata = auto, type = "response", s = lam)

compare rmse for solutions
rmse.path <- sqrt(colMeans((auto$mpg - fit.path)^2))
rmse.some <- sqrt(colMeans((auto$mpg - fit.some)^2))
plot(log(mod$lambda), rmse.path, cex = 0.5)

print 47

points(log(lam), rmse.some, pch = 0, col = "red")

print S3 ’print’ Methods for grpnet

Description

Prints some basic information about the coefficients (for coef.grpnet objects), observed cross-
validation error (for cv.grpnet objects), or the computed regularization path (for grpnet objects).

Usage

S3 method for class 'coef.grpnet'
print(x, ...)

S3 method for class 'cv.grpnet'
print(x, digits = max(3, getOption("digits") - 3), ...)

S3 method for class 'grpnet'
print(x, ...)

Arguments

x an object of class coef.grpnet, cv.grpnet, or grpnet

digits the number of digits to print (must be a positive integer)

... additional arguments for print (currently ignored)

Details

For coef.grpnet objects, prints the non-zero coefficients and uses "." for coefficients shrunk to
zero.

For cv.grpnet objects, prints the function call, the cross-validation type.measure, and a two-row
table with information about the min and 1se solutions.

For grpnet objects, prints a data frame with columns
* nGrp: number of non-zero groups for each lambda
* Df: effective degrees of freedom for each lambda
* %Dev: percentage of null deviance explained for each lambda
* Lambda: the values of lambda

Value

No return value (produces a printout)

48 rk

Note

Some syntax and functionality were modeled after the print functions in the glmnet package
(Friedman, Hastie, & Tibshirani, 2010).

Author(s)

Nathaniel E. Helwig <helwig@umn.edu>

References

Friedman, J., Hastie, T., & Tibshirani, R. (2010). Regularization paths for generalized linear models
via coordinate descent. Journal of Statistical Software, 33(1), 1-22. doi:10.18637/jss.v033.i01

Helwig, N. E. (2025). Versatile descent algorithms for group regularization and variable selection
in generalized linear models. Journal of Computational and Graphical Statistics, 34(1), 239-252.
doi:10.1080/10618600.2024.2362232

See Also

coef.grpnet for extracting coefficients

cv.grpnet for k-fold cross-validation of lambda

grpnet for fitting grpnet regularization paths

Examples

see 'coef.grpnet' for coefficient printing examples
?coef.grpnet

see 'cv.grpnet' for cross-validation error printing examples
?cv.grpnet

see 'grpnet' for regularization path printing examples
?grpnet

rk Reproducing Kernel Basis

Description

Generate a reproducing kernel basis matrix for a nominal, ordinal, or polynomial smoothing spline.

Usage

rk(x, df = NULL, knots = NULL, m = NULL, intercept = FALSE,
Boundary.knots = NULL, warn.outside = TRUE,
periodic = FALSE, xlev = levels(x))

https://doi.org/10.18637/jss.v033.i01
https://doi.org/10.1080/10618600.2024.2362232

rk 49

Arguments

x the predictor vector of length n. Can be a factor, integer, or numeric, see Note.

df the degrees of freedom, i.e., number of knots to place at quantiles of x. Defaults
to 5 but ignored if knots are provided.

knots the breakpoints (knots) defining the spline. If knots are provided, the df is
defined as length(unique(c(knots, Boundary.knots))).

m the derivative penalty order: 0 = ordinal spline, 1 = linear spline, 2 = cubic
spline, 3 = quintic spline

intercept should an intercept be included in the basis?

Boundary.knots the boundary points for spline basis. Defaults to range(x).

warn.outside if TRUE, a warning is provided when x values are outside of the Boundary.knots

periodic should the spline basis functions be constrained to be periodic with respect to
the Boundary.knots?

xlev levels of x (only applicable if x is a factor)

Details

Given a vector of function realizations f , suppose that f = Xβ, where X is the (unregularized)
spline basis and β is the coefficient vector. Let Q denote the postive semi-definite penalty matrix,
such that β⊤Qβ defines the roughness penalty for the spline. See Helwig (2017) for the form of X
and Q for the various types of splines.

Consider the spectral parameterization of the form f = Zα where

Z = XQ−1/2

is the regularized spline basis (that is returned by this function), and α = Q1/2β are the reparam-
eterized coefficients. Note that Xβ = Zα and β⊤Qβ = α⊤α, so the spectral parameterization
absorbs the penalty into the coefficients (see Helwig, 2021, 2024).

Syntax of this function is designed to mimic the syntax of the bs function.

Value

Returns a basis function matrix of dimension n by df (plus 1 if an intercept is included) with the
following attributes:

df degrees of freedom

knots knots for spline basis

m derivative penalty order

intercept was an intercept included?

Boundary.knots boundary points of x

periodic is the basis periodic?

xlev factor levels (if applicable)

50 rk

Note

The (default) type of spline basis depends on the class of the input x object:

* If x is an unordered factor, then a nominal spline basis is used

* If x is an ordered factor (and m = NULL), then an ordinal spline basis is used

* If x is an integer or numeric (and m = NULL), then a cubic spline basis is used

Note that you can override the default behavior by specifying the m argument.

Author(s)

Nathaniel E. Helwig <helwig@umn.edu>

References

Helwig, N. E. (2017). Regression with ordered predictors via ordinal smoothing splines. Frontiers
in Applied Mathematics and Statistics, 3(15), 1-13. doi:10.3389/fams.2017.00015

Helwig, N. E. (2021). Spectrally sparse nonparametric regression via elastic net regularized smoothers.
Journal of Computational and Graphical Statistics, 30(1), 182-191. doi:10.1080/10618600.2020.1806855

Helwig, N. E. (2025). Versatile descent algorithms for group regularization and variable selection
in generalized linear models. Journal of Computational and Graphical Statistics, 34(1), 239-252.
doi:10.1080/10618600.2024.2362232

Examples

######***###### NOMINAL SPLINE BASIS ######***######

x <- as.factor(LETTERS[1:5])
basis <- rk(x)
plot(1:5, basis[,1], t = "l", ylim = extendrange(basis))
for(j in 2:ncol(basis)){

lines(1:5, basis[,j], col = j)
}

######***###### ORDINAL SPLINE BASIS ######***######

x <- as.ordered(LETTERS[1:5])
basis <- rk(x)
plot(1:5, basis[,1], t = "l", ylim = extendrange(basis))
for(j in 2:ncol(basis)){

lines(1:5, basis[,j], col = j)
}

######***###### LINEAR SPLINE BASIS ######***######

x <- seq(0, 1, length.out = 101)
basis <- rk(x, m = 1)
plot(x, basis[,1], t = "l", ylim = extendrange(basis))
for(j in 2:ncol(basis)){

https://doi.org/10.3389/fams.2017.00015
https://doi.org/10.1080/10618600.2020.1806855
https://doi.org/10.1080/10618600.2024.2362232

rk.model.matrix 51

lines(x, basis[,j], col = j)
}

######***###### CUBIC SPLINE BASIS ######***######

x <- seq(0, 1, length.out = 101)
basis <- rk(x)
basis <- scale(basis) # for visualization only!
plot(x, basis[,1], t = "l", ylim = extendrange(basis))
for(j in 2:ncol(basis)){

lines(x, basis[,j], col = j)
}

######***###### QUINTIC SPLINE BASIS ######***######

x <- seq(0, 1, length.out = 101)
basis <- rk(x, m = 3)
basis <- scale(basis) # for visualization only!
plot(x, basis[,1], t = "l", ylim = extendrange(basis))
for(j in 2:ncol(basis)){

lines(x, basis[,j], col = j)
}

rk.model.matrix Construct Design Matrices via Reproducing Kernels

Description

Creates a design (or model) matrix using the rk function to expand variables via a reproducing
kernel basis.

Usage

rk.model.matrix(object, data = environment(object), ...)

Arguments

object a formula or terms object describing the fit model

data a data frame containing the variables referenced in object

... additional arguments passed to the rk function, e.g., df, knots, m, etc. Argu-
ments must be passed as a named list, see Examples.

52 rk.model.matrix

Details

Designed to be a more flexible alternative to the model.matrix function. The rk function is used
to construct a marginal basis for each variable that appears in the input object. Tensor product
interactions are formed by taking a row.kronecker product of marginal basis matrices. Interactions
of any order are supported using standard formulaic conventions, see Note.

Value

The design matrix corresponding to the input formula and data, which has the following attributes:

assign an integer vector with an entry for each column in the matrix giving the term in
the formula which gave rise to the column

term.labels a character vector containing the labels for each of the terms in the model

knots a named list giving the knots used for each variable in the formula

m a named list giving the penalty order used for each variable in the formula

periodic a named list giving the periodicity used for each variable in the formula

xlev a named list giving the factor levels used for each variable in the formula

Note

For formulas of the form y ~ x + z, the constructed model matrix has the form cbind(rk(x),
rk(z)), which simply concatenates the two marginal basis matrices. For formulas of the form y ~ x
: z, the constructed model matrix has the form row.kronecker(rk(x), rk(z)), where row.kronecker
denotes the row-wise kronecker product. The formula y ~ x * z is a shorthand for y ~ x + z + x : z,
which concatenates the two previous results. Unless it is suppressed (using 0+), the first column of
the basis will be a column of ones named (Intercept).

Author(s)

Nathaniel E. Helwig <helwig@umn.edu>

References

Helwig, N. E. (2017). Regression with ordered predictors via ordinal smoothing splines. Frontiers
in Applied Mathematics and Statistics, 3(15), 1-13. doi:10.3389/fams.2017.00015

Helwig, N. E. (2021). Spectrally sparse nonparametric regression via elastic net regularized smoothers.
Journal of Computational and Graphical Statistics, 30(1), 182-191. doi:10.1080/10618600.2020.1806855

Helwig, N. E. (2025). Versatile descent algorithms for group regularization and variable selection
in generalized linear models. Journal of Computational and Graphical Statistics, 34(1), 239-252.
doi:10.1080/10618600.2024.2362232

See Also

See rk for details on the reproducing kernel basis

https://doi.org/10.3389/fams.2017.00015
https://doi.org/10.1080/10618600.2020.1806855
https://doi.org/10.1080/10618600.2024.2362232

row.kronecker 53

Examples

load auto data
data(auto)

additive effects
x <- rk.model.matrix(mpg ~ ., data = auto)
dim(x) # check dimensions
attr(x, "assign") # check group assignments
attr(x, "term.labels") # check term labels

two-way interactions
x <- rk.model.matrix(mpg ~ . * ., data = auto)
dim(x) # check dimensions
attr(x, "assign") # check group assignments
attr(x, "term.labels") # check term labels

specify df for horsepower, weight, and acceleration
note: default df = 5 is used for displacement and model.year
df <- list(horsepower = 6, weight = 7, acceleration = 8)
x <- rk.model.matrix(mpg ~ ., data = auto, df = df)
sapply(attr(x, "knots"), length) # check df

specify knots for model.year
note: default knots are selected for other variables
knots <- list(model.year = c(1970, 1974, 1978, 1982))
x <- rk.model.matrix(mpg ~ ., data = auto, knots = knots)
sapply(attr(x, "knots"), length) # check df

row.kronecker Row-Wise Kronecker Product

Description

Calculates the row-wise Kronecker product between two matrices with the same number of rows.

Usage

row.kronecker(X, Y)

Arguments

X matrix of dimension n× p

Y matrix of dimension n× q

Details

Given X of dimension c(n, p) and Y of dimension c(n, q), this function returns

cbind(x[,1] * Y, x[,2] * Y, ..., x[,p] * Y)

which is a matrix of dimension c(n, p*q)

54 StartupMessage

Value

Matrix of dimension n × pq where each row contains the Kronecker product between the corre-
sponding rows of X and Y.

Author(s)

Nathaniel E. Helwig <helwig@umn.edu>

See Also

Used by the rk.model.matrix to construct basis functions for interaction terms

See kronecker for the regular kronecker product

Examples

X <- matrix(c(1, 1, 2, 2), nrow = 2, ncol = 2)
Y <- matrix(1:6, nrow = 2, ncol = 3)
row.kronecker(X, Y)

StartupMessage Startup Message for grpnet

Description

Prints the startup message when grpnet is loaded. Not intended to be called by the user.

Details

The ‘grpnet’ ascii start-up message was created using the taag software.

References

https://patorjk.com/software/taag/

visualize.loss 55

visualize.loss Plots grpnet Loss Function on Link or Response Scale

Description

Makes a plot or returns a data frame containing the specified loss function evaluated at a sequence
of input values.

Usage

visualize.loss(x = seq(-3, 3, length.out = 1001),
family = c("gaussian", "multigaussian",

"svm1", "svm2", "logit",
"binomial", "multinomial",
"poisson", "negative.binomial",
"Gamma", "inverse.gaussian"),

theta = 1,
type = c("link", "response"),
y = NULL,
plot = TRUE,
add = FALSE,
...)

Arguments

x sequence of linear predictor values at which to evaluate the loss.

family Character specifying the assumed distribution for the response variable. Partial
matching is allowed. See options below.

theta For SVM1: additional ("smoothing") parameter, that controls the smoothing rate
of the hinge loss function. For negative binomial: additional ("size") parameter,
where the variance function is defined as V (µ) = µ+ µ2/θ

type Default of type = "link" plots x versus the loss. Change to type = "response"
to plot mu versus the loss.

y Response value used to compute loss. Note that the loss function is interpreted
as a function of x given y.

plot if TRUE (default), then the result is plotted; otherwise the result is returned as a
data frame.

add if FALSE (default), then the plot function is used to create a new graphic; other-
wise the lines function is used to add lines to an existing graphic.

... additional arguments passed to plot function, e.g., xlim, ylim, etc.

Details

grpnet implements the following loss functions:

56 visualize.loss

gaussian/multigaussian L = (y − µ)2

svm1 L =

{
1
2θ (1− µy)2+ 1− θ < µy
1− µy − θ/2 µy ≤ 1− θ

svm2 L = (1− µy)2+

logit L = log(1 + exp(−µy))

binomial L = −y log(µ)− (1− y) log(1− µ)

multinomial L = −
∑m

l=1 I(y = l) log(µl)

poisson L = µ− y log(µ)

negative.binomial L = (θ + y) log(θ + µ)− y log(µ) + c
where c = log(Γ(θ))− log(Γ(θ + y))− θ log(θ)
is a constant with respect to µ

Gamma L = log(µ) + y/µ

inverse.gaussian L = (y − µ)2/(µ2y)

Value

If plot = TRUE, a plot is produced and nothing is returned.

If plot = FALSE, a data frame is returned with columns:

eta linear predictor, i.e., fitted values on link scale (same as input x)

mu expected value, i.e., fitted values on response scale (family$linkinv(x))

loss loss function evaluation for given eta (and y)

Author(s)

Nathaniel E. Helwig <helwig@umn.edu>

References

Helwig, N. E. (2025). Versatile descent algorithms for group regularization and variable selection
in generalized linear models. Journal of Computational and Graphical Statistics, 34(1), 239-252.
doi:10.1080/10618600.2024.2362232

See Also

visualize.penalty for plotting penalty function

visualize.shrink for plotting shrinkage operator

Examples

visualize.loss(family = "gaussian")

visualize.loss(family = "svm1", theta = 0.1)

visualize.loss(family = "svm2")

https://doi.org/10.1080/10618600.2024.2362232

visualize.penalty 57

visualize.loss(family = "logit")

visualize.loss(family = "binomial")

visualize.loss(family = "poisson")

visualize.loss(family = "negative.binomial", theta = 10)

visualize.loss(family = "Gamma")

visualize.loss(family = "inverse.gaussian")

visualize.penalty Plots grpnet Penalty Function or its Derivative

Description

Makes a plot or returns a data frame containing the group elastic net penalty (or its derivative)
evaluated at a sequence of input values.

Usage

visualize.penalty(x = seq(-5, 5, length.out = 1001),
penalty = c("LASSO", "MCP", "SCAD"),
alpha = 1,
lambda = 1,
gamma = 4,
derivative = FALSE,
plot = TRUE,
subtitle = TRUE,
legend = TRUE,
location = ifelse(derivative, "bottom", "top"),
...)

Arguments

x sequence of values at which to evaluate the penalty.

penalty which penalty or penalties should be plotted?

alpha elastic net tuning parameter (between 0 and 1).

lambda overall tuning parameter (non-negative).

gamma additional hyperparameter for MCP (>1) or SCAD (>2).

derivative if FALSE (default), then the penalty is plotted; otherwise the derivative of the
penalty is plotted.

plot if TRUE (default), then the result is plotted; otherwise the result is returned as a
data frame.

subtitle if TRUE (default), then the hyperparameter values are displayed in the subtitle.

58 visualize.penalty

legend if TRUE (default), then a legend is included to distinguish the different penalty
types.

location the legend’s location; ignored if legend = FALSE.
... additional arguments passed to plot function, e.g., xlim, ylim, etc.

Details

The group elastic net penalty is defined as

Pα,λ(β) = Qλ1
(∥β∥) + λ2

2
∥β∥2

where Qλ() denotes the L1 penalty (LASSO, MCP, or SCAD), ∥β∥ = (β⊤β)1/2 denotes the
Euclidean norm, λ1 = λα is the L1 tuning parameter, and λ2 = λ(1−α) is the L2 tuning parameter.
Note that λ and α denote the lambda and alpha arguments.

Value

If plot = TRUE, then produces a plot.

If plot = FALSE, then returns a data frame.

Author(s)

Nathaniel E. Helwig <helwig@umn.edu>

References

Fan, J., & Li, R. (2001). Variable selection via nonconcave penalized likelihood and its oracle
properties. Journal of the American Statistical Association, 96(456), 1348-1360. doi:10.1198/
016214501753382273

Helwig, N. E. (2025). Versatile descent algorithms for group regularization and variable selection
in generalized linear models. Journal of Computational and Graphical Statistics, 34(1), 239-252.
doi:10.1080/10618600.2024.2362232

Tibshirani, R. (1996). Regression and shrinkage via the Lasso. Journal of the Royal Statistical
Society, Series B, 58, 267-288. doi:10.1111/j.25176161.1996.tb02080.x

Zhang, C. H. (2010). Nearly unbiased variable selection under minimax concave penalty. The
Annals of Statistics, 38(2), 894-942. doi:10.1214/09AOS729

See Also

visualize.loss for plotting loss functions

visualize.shrink for plotting shrinkage operator

Examples

plot penalty functions
visualize.penalty()

plot penalty derivatives
visualize.penalty(derivative = TRUE)

https://doi.org/10.1198/016214501753382273
https://doi.org/10.1198/016214501753382273
https://doi.org/10.1080/10618600.2024.2362232
https://doi.org/10.1111/j.2517-6161.1996.tb02080.x
https://doi.org/10.1214/09-AOS729

visualize.shrink 59

visualize.shrink Plots grpnet Shrinkage Operator or its Estimator

Description

Makes a plot or returns a data frame containing the group elastic net shrinkage operator (or its
estimator) evaluated at a sequence of input values.

Usage

visualize.shrink(x = seq(-5, 5, length.out = 1001),
penalty = c("LASSO", "MCP", "SCAD"),
alpha = 1,
lambda = 1,
gamma = 4,
fitted = FALSE,
plot = TRUE,
subtitle = TRUE,
legend = TRUE,
location = "top",
...)

Arguments

x sequence of values at which to evaluate the penalty.

penalty which penalty or penalties should be plotted?

alpha elastic net tuning parameter (between 0 and 1).

lambda overall tuning parameter (non-negative).

gamma additional hyperparameter for MCP (>1) or SCAD (>2).

fitted if FALSE (default), then the shrinkage operator is plotted; otherwise the shrunken
estimator is plotted.

plot if TRUE (default), then the result is plotted; otherwise the result is returned as a
data frame.

subtitle if TRUE (default), then the hyperparameter values are displayed in the subtitle.

legend if TRUE (default), then a legend is included to distinguish the different penalty
types.

location the legend’s location; ignored if legend = FALSE.

... additional arguments passed to plot function, e.g., xlim, ylim, etc.

60 visualize.shrink

Details

The updates for the group elastic net estimator have the form

β
(t+1)
α,λ = Sλ1,λ2

(∥b(t+1)
α,λ ∥)b(t+1)

α,λ

where Sλ1,λ2
(·) is a shrinkage and selection operator, and

b
(t+1)
α,λ = β

(t)
α,λ + (δ(t)ϵ)

−1g(t)

is the unpenalized update with g(t) denoting the current gradient.

Note that λ1 = λα is the L1 tuning parameter, λ2 = λ(1 − α) is the L2 tuning parameter, δ(t)
is an upper-bound on the weights appearing in the Fisher information matrix, and ϵ is the largest
eigenvalue of the Gramm matrix n−1X⊤X.

Value

If plot = TRUE, then produces a plot.

If plot = FALSE, then returns a data frame.

Author(s)

Nathaniel E. Helwig <helwig@umn.edu>

References

Fan, J., & Li, R. (2001). Variable selection via nonconcave penalized likelihood and its oracle
properties. Journal of the American Statistical Association, 96(456), 1348-1360. doi:10.1198/
016214501753382273

Helwig, N. E. (2025). Versatile descent algorithms for group regularization and variable selection
in generalized linear models. Journal of Computational and Graphical Statistics, 34(1), 239-252.
doi:10.1080/10618600.2024.2362232

Tibshirani, R. (1996). Regression and shrinkage via the Lasso. Journal of the Royal Statistical
Society, Series B, 58, 267-288. doi:10.1111/j.25176161.1996.tb02080.x

Zhang, C. H. (2010). Nearly unbiased variable selection under minimax concave penalty. The
Annals of Statistics, 38(2), 894-942. doi:10.1214/09AOS729

See Also

visualize.loss for plotting loss functions

visualize.penalty for plotting penalty function

Examples

plot shrinkage operator
visualize.shrink()

plot shrunken estimator
visualize.shrink(fitted = TRUE)

https://doi.org/10.1198/016214501753382273
https://doi.org/10.1198/016214501753382273
https://doi.org/10.1080/10618600.2024.2362232
https://doi.org/10.1111/j.2517-6161.1996.tb02080.x
https://doi.org/10.1214/09-AOS729

Index

∗ algebra
row.kronecker, 53

∗ array
row.kronecker, 53

∗ datasets
auto, 2

∗ dplot
visualize.loss, 55
visualize.penalty, 57
visualize.shrink, 59

∗ graphs
cv.compare, 5
plot.cv.grpnet, 28
plot.grpnet, 30

∗ hplot
visualize.loss, 55
visualize.penalty, 57
visualize.shrink, 59

∗ models
family.grpnet, 15
visualize.loss, 55

∗ print
print, 47

∗ regression
coef, 3
cv.grpnet, 7
family.grpnet, 15
grpnet, 18
predict.cv.grpnet, 31
predict.grpnet, 38
rk, 48
rk.model.matrix, 51
visualize.loss, 55

∗ smooth
cv.grpnet, 7
grpnet, 18
rk, 48
rk.model.matrix, 51

auto, 2

bs, 49

class, 50
coef, 3
coef.grpnet, 4, 40, 47, 48
cv.compare, 5
cv.grpnet, 4–6, 7, 11, 17, 24, 29, 31, 33, 41,

47, 48

factor, 49
family, 23
family.grpnet, 15
formula, 51

gaussian, 16
glm, 8, 19, 23
grpnet, 4, 7–9, 11, 15, 17, 18, 19, 23, 24,

31–33, 41, 47, 48
grpnetStartupMessage (StartupMessage),

54

I, 23

kronecker, 54

lines, 55
lm, 8, 19

model.matrix, 8, 19, 52

plot, 29, 30, 55
plot.cv.grpnet, 7, 11, 28, 31
plot.grpnet, 7, 24, 29, 30
poly, 23
predict.cv.grpnet, 4, 11, 31, 41
predict.grpnet, 4, 24, 32, 33, 38
print, 47, 47
print.coef.grpnet, 4

rk, 48, 51, 52
rk.model.matrix, 8, 19, 51, 54

61

62 INDEX

row.kronecker, 52, 53

StartupMessage, 54

terms, 51

visualize.loss, 17, 55, 58, 60
visualize.penalty, 56, 57, 60
visualize.shrink, 56, 58, 59

	auto
	coef
	cv.compare
	cv.grpnet
	family.grpnet
	grpnet
	plot.cv.grpnet
	plot.grpnet
	predict.cv.grpnet
	predict.grpnet
	print
	rk
	rk.model.matrix
	row.kronecker
	StartupMessage
	visualize.loss
	visualize.penalty
	visualize.shrink
	Index

