bayesDiagnostics

Overview

bayesDiagnostics provides comprehensive tools for Bayesian model diagnostics and comparison, addressing critical gaps in existing Bayesian diagnostic tools.

Key Features

Installation

Install from GitHub:

devtools::install_github("ikrakib/bayesDiagnostics")

Once available on CRAN:

install.packages("bayesDiagnostics")

Quick Example

library(bayesDiagnostics)
library(brms)

# Fit Bayesian model
fit <- brm(mpg ~ hp + wt, data = mtcars)

# Conduct prior sensitivity analysis
result <- prior_sensitivity(
  model = fit,
  parameters = c("b_hp", "b_wt"),
  prior_grid = list(
    weak = prior(normal(0, 10), class = b),
    strong = prior(normal(0, 1), class = b)
  )
)

print(result)
plot(result)

Functions by Category

Category 1: Prior Sensitivity

Category 2: Posterior Predictive Checks

Category 3: Model Comparison

Category 4: Convergence Diagnostics

Category 5: Prior Elicitation & Utilities

Documentation

For detailed documentation, see the package vignettes:

vignette("bayesDiagnostics")

Contributing

Contributions welcome! Please:

  1. Fork the repository
  2. Create a feature branch
  3. Make your changes
  4. Add tests
  5. Submit a pull request

Citation

citation("bayesDiagnostics")