Package ‘azr’

January 7, 2026

Title Credential Chain for Seamless 'OAuth 2.0' Authentication to
'Azure Services'

Version 0.2.1

Description Implements a credential chain for 'Azure OAuth 2.0" authentication
based on the package 'httr2"s 'OAuth' framework. Sequentially attempts authentication
methods until one succeeds. During development allows interactive
browser-based flows ('Device Code' and 'Auth Code' flows) and non-interactive
flow ('Client Secret') in batch mode.

License MIT + file LICENSE
Encoding UTF-8
RoxygenNote 7.3.3

URL https://pedrobtz.github.io/azr/, https://github.com/pedrobtz/azr

BugReports https://github.com/pedrobtz/azr/issues
Depends R (>=4.1)
Imports utils, R6, cli, httr2 (>= 1.2.1), jsonlite, rlang

Suggests data.table, httpuv, clipr, processx, testthat (>= 3.0.0), ver
(>=2.0.0)

Config/testthat/edition 3

NeedsCompilation no

Author Pedro Baltazar [aut, cre]

Maintainer Pedro Baltazar <pedrobtz@gmail.com>
Repository CRAN

Date/Publication 2026-01-07 20:20:02 UTC

Contents

api_client e e
APL_TESOUICE .« « . . v v v v e et i e e e e e e e e e e e e e e
API_SETVICE . .« . v i i e e e e e e e e e e e
AuthCodeCredential e

https://pedrobtz.github.io/azr/
https://github.com/pedrobtz/azr
https://github.com/pedrobtz/azr/issues

2 api_client
azr_graph_client e e e 11
AzureCLICredential e e e 12
az_cli_account_show e 15
az_cli_get_token 16
az_cli_is_login 17
az_cli_login e 18
az_cli_logout e e 19
ClientSecretCredential e 19
credential_chain L 21
DefaultCredential e 22
default_azure client_id e 24
default_azure_client_secret e e 25
default_azure_config_dir 25
default_azure_host 26
default_azure oauth_client 26
default_azure_scope 27
default_azure tenant_id e 27
default_azure_url e e 28
default_credential_chain 29
default_non_auth 29
default_redirect_uri e e e 30
default_response_handler 30
DeviceCodeCredential e 31
get_credential_auth L L 33
get_credential_provider Lo 34
get_request_authorizer 35
get_tOKeN e e 37
get_token_provider L. e e e 38
is_hosted_session L. e e e e e e 39

Index 41

api_client Azure API Client

Description

An R6 class that provides a base HTTP client for interacting with Azure APIs. This client handles
authentication, request building, retry logic, logging, and error handling for Azure API requests.

Details

The api_client class is designed to be a base class for Azure service-specific clients. It provides:

Automatic authentication using Azure credentials
Configurable retry logic with exponential backoff
Request and response logging

JSON, XML, and HTML content type handling
Standardized error handling

api_client 3

Public fields
.host_url Base URL for the API

.base_req Base httr2 request object

.provider Credential provider R6 object

.credentials Credentials function for authentication

.options Request options (timeout, connecttimeout, max_tries)

.response_handler Optional callback function to process response content

Methods

Public methods:

e api_client$new()

e api_client$.fetch()

e api_client$.req_build()

e api_client$.reqg_perform()
e api_client$.resp_content()
e api_client$.get_token()

e api_client$clone()

Method new(): Create a new API client instance

Usage:

api_client$new(
host_url,
provider = NULL,
credentials = NULL,
timeout = 60L,
connecttimeout = 30L,
max_tries = 5L,
response_handler = NULL

)

Arguments:

host_url A character string specifying the base URL for the API (e.g., "https://management.azure.com").

provider AnR®6 credential provider object that inherits from the Credential or DefaultCredential
class. If provided, the credential’s reg_auth method will be used for authentication. Takes
precedence over credentials.

credentials A function that adds authentication to requests. If both provider and credentials
are NULL, uses default_non_auth(). The function should accept an httr2 request object
and return a modified request with authentication.

timeout An integer specifying the request timeout in seconds. Defaults to 60.

connecttimeout An integer specifying the connection timeout in seconds. Defaults to 30.

max_tries An integer specifying the maximum number of retry attempts for failed requests.
Defaults to 5.

api_client

response_handler An optional function to process the parsed response content. The function
should accept one argument (the parsed response) and return the processed content. If NULL,
uses default_response_handler () which converts data frames to data.table objects. De-
faults to NULL.

Returns: A new api_client object

Method . fetch(): Make an HTTP request to the API

Usage:
api_client$.fetch(
path,

reg_data = NULL,
reg_method = "get",
verbosity = oL,

content = c("body", "headers"”, "response”, "request"),
content_type = NULL

)

Arguments:

path A character string specifying the API endpoint path. Supports glue: :glue() syntax for
variable interpolation using named arguments passed via

. Named arguments used for path interpolation with glue: :glue().

req_data Requestdata. For GET requests, this is used as query parameters. For other methods,
this is sent as JSON in the request body. Can be a list or character string (JSON).

n on n on

req_method A character string specifying the HTTP method. One of "get”, "post”,
"patch”, or "delete"”. Defaults to "get".

put”,

verbosity Aninteger specifying the verbosity level for request debugging (passedto httr2: :req_perform()).
Defaults to @.

content A character string specifying what to return. One of:
* "body” (default): Return the parsed response body
* "headers": Return response headers
* "response”: Return the full httr2 response object
* "request”: Return the prepared request object without executing it
content_type A character string specifying how to parse the response body. If NULL, uses the

n n

response’s Content-Type header. Common values: "application/json”, "application/xml”,
"text/html”.
Returns: Depends on the content parameter:
* "body": Parsed response body (list, data.frame, or character)
* "headers": List of response headers
* "response”: Full httr2::response() object
* "request”: httr2::request() object

Method .req_build(): Build an HTTP request object

Usage:
api_client$.req_build(path, ..., reg_data = NULL, req_method = "get")

api_client

Arguments:

path A character string specifying the API endpoint path. Supports glue: :glue() syntax for
variable interpolation using named arguments passed via

. Named arguments used for path interpolation with glue: :glue().

req_data Requestdata. For GET requests, this is used as query parameters. For other methods,
this is sent as JSON in the request body. Can be a list or character string (JSON).

req_method A character string specifying the HTTP method. One of "get”, "post”, "put”,
"patch”, or "delete"”. Defaults to "get".

Returns: An httr2::request() object ready for execution

Method . reqg_perform(): Perform an HTTP request and log the results

Usage:

api_client$.req_perform(req, verbosity)

Arguments:

req Anhttr2::request() object to execute

verbosity Aninteger specifying the verbosity level for request debugging (passedto httr2: :req_perform()).
Defaults to 0.

Returns: An httr2::response() object containing the API response

Method . resp_content(): Extract and parse response content
Usage:
api_client$.resp_content(resp, content_type = NULL)
Arguments:
resp Anhttr2::response() object
content_type A character string specifying how to parse the response body. If NULL, uses the
response’s Content-Type header. Common values: "application/json”, "application/xml",
"text/html”.
Returns: Parsed response body. Format depends on content type:
¢ JSON: List or data.frame
e XML: xml2 document
* HTML: xml2 document
* Other: Character string

Method .get_token(): Get authentication token from the credential provider

Usage:

api_client$.get_token()

Returns: An httr2::oauth_token() object if a provider is available, otherwise returns NULL
with a warning.

Method clone(): The objects of this class are cloneable with this method.
Usage:
api_client$clone(deep = FALSE)
Arguments:
deep Whether to make a deep clone.

6 api_resource

Examples

Not run:
Create a client with default credentials
client <- api_client$new(

host_url = "https://management.azure.com”

)

Create a client with a credential provider
cred_provider <- get_credential_provider(
scope = "https://management.azure.com/.default”
)
client <- api_client$new(
host_url = "https://management.azure.com”,
provider = cred_provider

)

Create a client with custom credentials function
client <- api_client$new(
host_url = "https://management.azure.com”,
credentials = my_credential_function,
timeout = 120,
max_tries = 3

Create a client with custom response handler
custom_handler <- function(content) {
Custom processing logic - e.g., keep data frames as-is
content
3
client <- api_client$new(
host_url = "https://management.azure.com”,
response_handler = custom_handler

)

Make a GET request
response <- client$.fetch(

path = "/subscriptions/{subscription_id}/resourceGroups”,
subscription_id = "my-subscription-id”,
reg_method = "get"

)

End(Not run)

api_resource Azure API Resource

Description

An R6 class that wraps an api_client and adds an additional path segment (like "beta" or "v1.0")
to all requests. This is useful for APIs that version their endpoints or have different API surfaces
under different paths.

api_resource 7

Details

The api_resource class creates a modified base request by appending an endpoint path to the
client’s base request. All subsequent API calls through this resource will automatically include this
path prefix.

Public fields

.client The cloned api_client instance with modified base_req

Methods

Public methods:

e api_resource$new()
e api_resource$clone()

Method new(): Create a new API resource instance
Usage:
api_resource$new(client, endpoint)
Arguments:

client An api_client object that provides the base HTTP client functionality. This will be
cloned to avoid modifying the original.

endpoint A character string specifying the API endpoint or path segment to append (e.g.,
"v1.0", "beta").

Returns: A new api_resource object

Method clone(): The objects of this class are cloneable with this method.
Usage:
api_resource$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Examples

Not run:
Create a client
client <- api_client$new(
host_url = "https://graph.microsoft.com"”
)

Create a resource with v1.0 API endpoint
resource_vl <- api_resource$new(

client = client,

endpoint = "v1.0"

)

Create a resource with beta API endpoint
resource_beta <- api_resource$new(

8 api_service

client = client,
endpoint = "beta”

)

Make requests - the endpoint is automatically prepended
response <- resource_v1$.fetch(

path = "/me",

reg_method = "get"
)

End(Not run)

api_service API Service Base Class

Description

Base R6 class for creating API service wrappers. This class provides a foundation for building
service-specific API clients with authentication, endpoint management, and configuration.

Public fields

.client An api_client instance for making API requests

Methods
Public methods:

e api_service$new()

Method new(): Create a new API service instance

Usage:
api_service$new(
client = NULL,
chain = NULL,
endpoints = list(),
config = list()
)
Arguments:
client An api_client instance. If NULL, a new client will be created.
chain A credential_chain instance for authentication. Optional.

endpoints A named list where names are endpoint paths (e.g., "v1.0", "beta") and values are
R6 class objects (not instances) to use for creating resources. Defaults to an empty list. If
the value is NULL, api_resource will be used.

config A list of configuration options. Defaults to an empty list.

Returns: A new api_service object

AuthCodeCredential 9

AuthCodeCredential Authorization code credential authentication

Description

Authenticates a user through the OAuth 2.0 authorization code flow. This flow opens a web browser
for the user to sign in.

Details

The authorization code flow is the standard OAuth 2.0 flow for interactive authentication. It requires
a web browser and is suitable for applications where the user can interact with a browser window.

The credential supports token caching to avoid repeated authentication. Tokens can be cached to
disk or in memory. A redirect URI is required for the OAuth flow to complete.

Super classes

azr::Credential -> azr::InteractiveCredential -> AuthCodeCredential

Methods

Public methods:
¢ AuthCodeCredential$new()
¢ AuthCodeCredential$get_token()
¢ AuthCodeCredential$req_auth()
¢ AuthCodeCredential$clone()

Method new(): Create a new authorization code credential

Usage:
AuthCodeCredential$new(
scope = NULL,

tenant_id = NULL,

client_id = NULL,

use_cache = "disk"”,

offline = TRUE,

redirect_uri = default_redirect_uri()

)
Arguments:
scope A character string specifying the OAuth2 scope. Defaults to NULL.

tenant_id A character string specifying the Azure Active Directory tenant ID. Defaults to
NULL.

client_id A character string specifying the application (client) ID. Defaults to NULL.

use_cache A character string specifying the cache type. Use "disk” for disk-based caching or
"memory” for in-memory caching. Defaults to "disk".

10

AuthCodeCredential

offline A logical value indicating whether to request offline access (refresh tokens). Defaults
to TRUE.

redirect_uri A character string specifying the redirect URI registered with the application.
Defaults to default_redirect_uri().

Returns: A new AuthCodeCredential object

Method get_token(): Get an access token using authorization code flow

Usage:
AuthCodeCredential$get_token(reauth = FALSE)

Arguments:
reauth A logical value indicating whether to force reauthentication. Defaults to FALSE.

Returns: An httr2::oauth_token() object containing the access token

Method req_auth(): Add OAuth authorization code authentication to an httr2 request

Usage:
AuthCodeCredential$req_auth(req)

Arguments:
req Anhttr2::request() object

Returns: The request object with OAuth authorization code authentication configured

Method clone(): The objects of this class are cloneable with this method.
Usage:
AuthCodeCredential$clone(deep = FALSE)
Arguments:
deep Whether to make a deep clone.

Examples

AuthCodeCredential requires an interactive session
Not run:

Create credential with default settings

cred <- AuthCodeCredential$new(

tenant_id = "your-tenant-id",
client_id = "your-client-id",
scope = "https://management.azure.com/.default”

)

Get an access token (will open browser for authentication)
token <- cred$get_token()

Force reauthentication
token <- cred$get_token(reauth = TRUE)

Use with httr2 request
req <- httr2::request("https://management.azure.com/subscriptions”)

req <- cred$req_auth(req)

End(Not run)

azr_graph_client 11

azr_graph_client Create a Microsoft Graph API Client

Description

Creates a configured client for the Microsoft Graph API with authentication and versioned endpoints
(v1.0 and beta). This function returns an api_service object that provides access to Microsoft Graph
resources through versioned endpoints.

Usage
azr_graph_client(scopes = ".default”, ..., chain = NULL)
Arguments
scopes A character string specifying the OAuth2 scope suffix to be appended to the
Graph API URL. Defaults to ".default”, which requests all permissions the
app has been granted. The full scope will be https://graph.microsoft.com/{scopes}.
Additional arguments passed to the api_client constructor.
chain A credential_chain instance for authentication. If NULL, a default credential
chain will be created using DefaultCredential.
Details

The function creates a Microsoft Graph service using these components:

* api_client: A general-purpose API client configured with the Graph APT host URL (https://graph.microsoft.com)
and authentication provider.

 api_graph_resource: A specialized resource class that extends api_resource with Microsoft
Graph-specific methods. Currently implements:

— me(select =NULL): Fetch the current user’s profile. The select parameter accepts a
character vector of properties to return (e.g., c("displayName”, "mail™)).

* api_service: A service container that combines the client and resources with versioned end-
points (v1.0 and beta). The service is locked using lockEnvironment () to prevent modifica-
tion after creation.

Value

An api_service object configured for Microsoft Graph API with v1.0 and beta endpoints. The object
is locked using lockEnvironment() to prevent modification after creation. Access endpoints via
$v1.0 or $beta.

12 AzureCLICredential

Examples

Not run:
Create a Graph API client with default credentials
graph <- azr_graph_client()

Fetch current user profile from v1.0 endpoint
me <- graph$vi1.0$me()

Fetch specific properties using OData $select
me <- graph$vil.0%$me(select = c("displayName”, "mail”, "userPrincipalName"))

Use beta endpoint for preview features
me_beta <- graph$beta$me(select = c("displayName”, "mail”))

Create with a custom credential chain
custom_chain <- credential_chain(

AzureCLICredential$new(scope = "https://graph.microsoft.com/.default"”)
)

graph <- azr_graph_client(chain = custom_chain)

Use specific scopes instead of .default
graph <- azr_graph_client(scopes = "User.Read Mail.Read")

End(Not run)

AzureCLICredential Azure CLI credential authentication

Description
Authenticates using the Azure CLI (az) command-line tool. This credential requires the Azure CLI
to be installed and the user to be logged in via az login.
Details
The credential uses the az account get-access-token command to retrieve access tokens. It will
use the currently active Azure CLI account and subscription unless a specific tenant is specified.
Super class

azr::Credential -> AzureCLICredential

Public fields

.process_timeout Timeout in seconds for Azure CLI command execution

AzureCLICredential 13

Methods

Public methods:

e AzureCLICredential$new()

e AzureCLICredential$get_token()

e AzureCLICredential$req_auth()

* AzureCLICredential$account_show()
e AzureCLICredential$login()

e AzureCLICredential$logout()

e AzureCLICredential$clone()

Method new(): Create a new Azure CLI credential

Usage:
AzureCLICredential$new(
scope = NULL,

tenant_id = NULL,
process_timeout = NULL,
login = FALSE,
use_bridge = FALSE
)
Arguments:
scope A character string specifying the OAuth2 scope. Defaults to NULL, which uses the scope
set during initialization.
tenant_id A character string specifying the Azure Active Directory tenant ID. Defaults to
NULL, which uses the default tenant from Azure CLI.

process_timeout A numeric value specifying the timeout in seconds for the Azure CLI pro-
cess. Defaults to 10.

login A logical value indicating whether to check if the user is logged in and perform login if
needed. Defaults to FALSE.

use_bridge A logical value indicating whether to use the device code bridge webpage during
login. If TRUE, launches an intermediate local webpage that displays the device code and
facilitates copy-pasting before redirecting to the Microsoft device login page. Only used
when login = TRUE. Defaults to FALSE.

Returns: A new AzureCLICredential object

Method get_token(): Get an access token from Azure CLI

Usage:
AzureCLICredential$get_token(scope = NULL)

Arguments:
scope A character string specifying the OAuth?2 scope. If NULL, uses the scope specified during
initialization.

Returns: An httr2::oauth_token() object containing the access token

Method req_auth(): Add authentication to an httr2 request

14 AzureCLICredential

Usage:
AzureCLICredential$reqg_auth(req, scope = NULL)

Arguments:

req An httr2::request() object

scope A character string specifying the OAuth?2 scope. If NULL, uses the scope specified during
initialization.

Returns: The request object with authentication header added

Method account_show(): Show the currently active Azure CLI account information

Usage:
AzureCLICredential$account_show(timeout = NULL)

Arguments:
timeout A numeric value specifying the timeout in seconds for the Azure CLI command. If
NULL, uses the process timeout specified during initialization.

Returns: A list containing the account information from Azure CLI

Method login(): Perform Azure CLI login using device code flow

Usage:
AzureCLICredential$login()

Returns: Invisibly returns the exit status (O for success, non-zero for failure)

Method logout(): Log out from Azure CLI

Usage:
AzureCLICredential$logout ()

Returns: Invisibly returns NULL

Method clone(): The objects of this class are cloneable with this method.

Usage:
AzureCLICredential$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

Examples

Create credential with default settings
cred <- AzureCLICredential$new()

Create credential with specific scope and tenant
cred <- AzureCLICredential$new(
scope = "https://management.azure.com/.default”,
tenant_id = "your-tenant-id"

)

To get a token or authenticate a request it is required that
'az login' is successfully executed, otherwise it will return an error.

az_cli_account_show 15

Not run:
Get an access token
token <- cred$get_token()

Use with httr2 request
req <- httr2::request("https://management.azure.com/subscriptions”)

resp <- httr2::req_perform(cred$req_auth(req))

End(Not run)

az_cli_account_show Show Azure CLI Account Information

Description
Retrieves information about the currently active Azure CLI account and subscription. This function
runs az account show and parses the JSON output into an R list.

Usage

az_cli_account_show(timeout = 10L)

Arguments
timeout An integer specifying the timeout in seconds for the Azure CLI command. De-
faults to 10.
Details

The function returns details about the current Azure subscription including:

* Subscription ID and name

e Tenant ID

* Account state (e.g., "Enabled")
¢ User information

¢ Cloud environment details

Value

A list containing the account information from Azure CLI

16 az_cli_get_token

Examples

Not run:
Get current account information
account_info <- az_cli_account_show()

Access subscription ID
subscription_id <- account_info$id

Access tenant ID
tenant_id <- account_info$tenantId

End(Not run)

az_cli_get_token Get Access Token from Azure CLI

Description

Retrieves an access token from Azure CLI using the az account get-access-token command.
This is a lower-level function that directly interacts with the Azure CLI to obtain OAuth2 tokens.

Usage

az_cli_get_token(scope, tenant_id = NULL, timeout = 10L)

Arguments
scope A character string specifying the OAuth2 scope for which to request the access
token (e.g., "https://management.azure.com/.default").
tenant_id A character string specifying the Azure Active Directory tenant ID. If NULL, uses
the default tenant from Azure CLI. Defaults to NULL.
timeout A numeric value specifying the timeout in seconds for the Azure CLI process.
Defaults to 10.
Details

This function executes the Azure CLI command and parses the JSON response to create an httr2
OAuth token object. The token includes the access token, token type, and expiration time.

Value
An httr2::oauth_token() object containing:
* access_token: The OAuth2 access token string

* token_type: The type of token (typically "Bearer")

* .expires_at: POSIXct timestamp when the token expires

az_cli_is_login 17

Examples

Not run:
Get a token for Azure Resource Manager
token <- az_cli_get_token(
scope = "https://management.azure.com/.default”

)

Get a token for a specific tenant

token <- az_cli_get_token(
scope = "https://graph.microsoft.com/.default”,
tenant_id = "your-tenant-id"

)

Access the token string
access_token <- token$access_token

End(Not run)

az_cli_is_login Check if User is Logged in to Azure CLI

Description
Checks whether the user is currently logged in to Azure CLI by attempting to retrieve account
information.

Usage

az_cli_is_login(timeout = 10L)

Arguments
timeout A numeric value specifying the timeout in seconds for the Azure CLI command.
Defaults to 10.
Value

A logical value: TRUE if the user is logged in, FALSE otherwise

Examples

Not run:

Check if logged in

if (az_cli_is_login()) {
message("User is logged in")

} else {
message("User is not logged in")

}

18 az_cli_login

End(Not run)

az_cli_login Azure CLI Device Code Login

Description
Performs an interactive Azure CLI login using device code flow. Automatically captures the device
code, copies it to the clipboard, and opens the browser for authentication.

Usage

az_cli_login(tenant_id = NULL, use_bridge = FALSE, verbose = FALSE)

Arguments
tenant_id A character string specifying the Azure Active Directory tenant ID to authenti-
cate against. If NULL (default), uses the default tenant from Azure CLI configu-
ration.
use_bridge A logical value indicating whether to use the device code bridge webpage. If
TRUE, launches an intermediate local webpage that displays the device code and
facilitates copy-pasting before redirecting to the Microsoft device login page.
If FALSE (default), copies the code directly to the clipboard and opens the Mi-
crosoft login page.
verbose A logical value indicating whether to print detailed process output to the console,
including error messages from the Azure CLI process. If FALSE (default), only
essential messages are displayed.
Details

This function runs az login --use-device-code, monitors the output to extract the device code,
copies it to the clipboard, and opens the authentication URL in the default browser.

Value

Invisibly returns the exit status (0 for success, non-zero for failure)

Examples

Not run:
Perform Azure CLI login with device code flow
az_cli_login()

Use the bridge webpage for easier code handling
az_cli_login(use_bridge = TRUE)

az_cli_logout 19

Login to a specific tenant with verbose output
az_cli_login(tenant_id = "your-tenant-id", verbose = TRUE)

End(Not run)

az_cli_logout Azure CLI Logout

Description

Logs out from Azure CLI by removing all stored credentials and account information. This function
runs az logout.

Usage

az_cli_logout()

Details
After logging out, you will need to run az_cli_login() again to authenticate and use Azure CLI
credentials.

Value

Invisibly returns NULL

Examples

Not run:
Log out from Azure CLI
az_cli_logout()

End(Not run)

ClientSecretCredential
Client secret credential authentication

Description

Authenticates a service principal using a client ID and client secret. This credential is commonly
used for application authentication in Azure.

20 ClientSecretCredential

Details

The credential uses the OAuth 2.0 client credentials flow to obtain access tokens. It requires a
registered Azure AD application with a client secret. The client secret should be stored securely
and not hard-coded in scripts.

Super class

azr::Credential ->ClientSecretCredential

Methods

Public methods:

e ClientSecretCredential$validate()
e ClientSecretCredential$get_token()
e ClientSecretCredential$req_auth()
e ClientSecretCredential$clone()

Method validate(): Validate the credential configuration

Usage:
ClientSecretCredential$validate()

Details: Checks that the client secret is provided and not NA or NULL. Calls the parent class
validation method.
Method get_token(): Get an access token using client credentials flow

Usage:
ClientSecretCredential$get_token()

Returns: An httr2::oauth_token() object containing the access token

Method req_auth(): Add OAuth client credentials authentication to an httr2 request

Usage:
ClientSecretCredential$req_auth(req)

Arguments:

req An httr2::request() object

Returns: The request object with OAuth client credentials authentication configured

Method clone(): The objects of this class are cloneable with this method.

Usage:
ClientSecretCredential$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

credential_chain 21

Examples

Create credential with client secret
cred <- ClientSecretCredential$new(

tenant_id = "your-tenant-id",

client_id = "your-client-id",

client_secret = "your-client-secret”,

scope = "https://management.azure.com/.default”
)

To get a token or authenticate a request it requires
valid 'client_id' and 'client_secret' credentials,

otherwise it will return an error.

Not run:

Get an access token

token <- cred$get_token()

Use with httr2 request
req <- httr2::request("https://management.azure.com/subscriptions”)

resp <- httr2::req_perform(cred$req_auth(req))

End(Not run)

credential_chain Create Custom Credential Chain

Description

Creates a custom chain of credential providers to attempt during authentication. Credentials are tried
in the order they are provided until one successfully authenticates. This allows you to customize
the authentication flow beyond the default credential chain.

Usage

credential_chain(...)

Arguments
Named credential objects or credential classes. Each element should be a cre-
dential class (e.g., ClientSecretCredential) or an instantiated credential ob-
ject that inherits from the Credential base class. The names are used for iden-
tification purposes.

Value

A credential_chain object containing the specified sequence of credential providers.

See Also

default_credential_chain(), get_token_provider()

22 DefaultCredential

Examples

Create a custom chain with only non-interactive credentials
custom_chain <- credential_chain(

client_secret = ClientSecretCredential,

azure_cli = AzureCLICredential

)

Use the custom chain to get a token

Not run:

token <- get_token(
scope = "https://graph.microsoft.com/.default”,
chain = custom_chain

)

End(Not run)

DefaultCredential Default credential authentication

Description

An R6 class that provides lazy initialization of credential providers. The credential provider is
created on first access using the default credential chain.

Details

This class wraps the credential discovery process in an R6 object with a lazily evaluated provider
field. The provider is only created when first accessed, using the same logic as get_token_provider().

Public fields

.scope Character string specifying the authentication scope.
.tenant_id Character string specifying the tenant ID.
.client_id Character string specifying the client ID.
.client_secret Character string specifying the client secret.
.use_cache Character string indicating the caching strategy.
.offline Logical indicating whether to request offline access.

.chain A credential chain object for authentication.

Active bindings

provider Lazily initialized credential provider

DefaultCredential 23

Methods

Public methods:
e DefaultCredential$new()
e DefaultCredential$get_token()
e DefaultCredential$req_auth()
e DefaultCredential$clone()

Method new(): Create a new DefaultCredential object

Usage:
DefaultCredential$new(
scope = NULL,

tenant_id = NULL,

client_id = NULL,

client_secret = NULL,

use_cache = "disk",

offline = TRUE,

chain = default_credential_chain()

)

Arguments:

scope Optional character string specifying the authentication scope.

tenant_id Optional character string specifying the tenant ID for authentication.
client_id Optional character string specifying the client ID for authentication.
client_secret Optional character string specifying the client secret for authentication.

use_cache Character string indicating the caching strategy. Defaults to "disk”. Options in-
clude "disk" for disk-based caching or "memory” for in-memory caching.

offline Logical. If TRUE, adds ’offline_access’ to the scope to request a ‘refresh_token’. De-
faults to TRUE.

chain A list of credential objects, where each element must inherit from the Credential base
class. Credentials are attempted in the order provided until get_token succeeds.

Returns: A new DefaultCredential object

Method get_token(): Get an access token using the credential chain

Usage:
DefaultCredential$get_token()

Returns: An httr2::oauth_token() object containing the access token

Method req_auth(): Add authentication to an httr2 request

Usage:
DefaultCredential$reg_auth(req)

Arguments:
req Anhttr2::request() object

Returns: The request object with authentication configured

Method clone(): The objects of this class are cloneable with this method.

24 default_azure_client_id

Usage:
DefaultCredential$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Examples

Create a DefaultCredential object

cred <- DefaultCredential$new(
scope = "https://graph.microsoft.com/.default”,
tenant_id = "my-tenant-id”

)

Not run:
Get a token (triggers lazy initialization)
token <- cred$get_token()

Authenticate a request
req <- httr2::request("https://management.azure.com/subscriptions”)

resp <- httr2::req_perform(cred$reg_auth(req))

Or access the provider directly
provider <- cred$provider

End(Not run)

default_azure_client_id
Get default Azure client ID

Description

Retrieves the Azure client ID from the AZURE_CLIENT_ID environment variable, or falls back to the
default Azure CLI client ID if not set.

Usage

default_azure_client_id()

Value

A character string with the client ID

Examples

default_azure_client_id()

default_azure_client_secret 25

default_azure_client_secret
Get default Azure client secret

Description
Retrieves the Azure client secret from the AZURE_CLIENT_SECRET environment variable, or returns
NA_character_ if not set.

Usage

default_azure_client_secret()

Value

A character string with the client secret, or NA_character_ if not set

Examples

default_azure_client_secret()

default_azure_config_dir
Get default Azure configuration directory

Description
Retrieves the Azure configuration directory from the AZURE_CONFIG_DIR environment variable, or
falls back to the platform-specific default.

Usage

default_azure_config_dir()

Value

A character string with the Azure configuration directory path

Examples

default_azure_config_dir()

26 default_azure_oauth_client

default_azure_host Get default Azure authority host

Description
Retrieves the Azure authority host from the AZURE_AUTHORITY_HOST environment variable, or falls
back to Azure Public Cloud if not set.

Usage

default_azure_host()

Value

A character string with the authority host URL

Examples

default_azure_host()

default_azure_oauth_client
Create default Azure OAuth client

Description

Creates an httr2: :oauth_client() configured for Azure authentication.

Usage

default_azure_oauth_client(
client_id = default_azure_client_id(),
client_secret = NULL,
name = NULL

Arguments

client_id A character string specifying the client ID. Defaults to default_azure_client_id().
client_secret A character string specifying the client secret. Defaults to NULL.

name A character string specifying the client name. Defaults to NULL.

Value

An httr2::oauth_client() object

default_azure_scope 27

Examples

client <- default_azure_oauth_client()

client <- default_azure_oauth_client(
client_id = "my-client-id",
client_secret = "my-secret”

)

default_azure_scope Get default Azure OAuth scope

Description

Returns the default OAuth scope for a specified Azure resource.

Usage
default_azure_scope(resource = "azure_arm")
Arguments
resource A character string specifying the Azure resource. Must be one of: "azure_arm”
(Azure Resource Manager), "azure_graph"” (Microsoft Graph), "azure_storage”
(Azure Storage), or "azure_key_vault"” (Azure Key Vault). Defaults to "azure_arm”.
Value

A character string with the OAuth scope URL

Examples

default_azure_scope()
default_azure_scope("azure_graph")

default_azure_tenant_id
Get default Azure tenant ID

Description

Retrieves the Azure tenant ID from the AZURE_TENANT_ID environment variable, or falls back to
the default value if not set.

Usage

default_azure_tenant_id()

28 default_azure_url

Value

A character string with the tenant ID

Examples

default_azure_tenant_id()

default_azure_url Get default Azure OAuth URLs

Description

Constructs Azure OAuth 2.0 endpoint URLSs for a given tenant and authority host.

Usage

default_azure_url(
endpoint = NULL,
oauth_host = default_azure_host(),
tenant_id = default_azure_tenant_id()

)
Arguments
endpoint A character string specifying which endpoint URL to return. Must be one of:
"authorize”, "token”, or "devicecode"”. If NULL (default), returns a list of all
endpoint URLs.
oauth_host A character string specifying the Azure authority host. Defaults to default_azure_host().
tenant_id A character string specifying the tenant ID. Defaults to default_azure_tenant_id().
Value

If endpoint is specified, returns a character string with the URL. If endpoint is NULL, returns a
named list of all endpoint URLs.

Examples

Get all URLs
default_azure_url()

Get specific endpoint
default_azure_url("token")

Custom tenant
default_azure_url("authorize”, tenant_id = "my-tenant-id")

default_credential_chain 29

default_credential_chain
Create Default Credential Chain

Description

Creates the default chain of credentials to attempt during authentication. The credentials are tried
in order until one successfully authenticates. The default chain includes:

1. Client Secret Credential - Uses client ID and secret
2. Authorization Code Credential - Interactive browser-based authentication
3. Azure CLI Credential - Uses credentials from Azure CLI

4. Device Code Credential - Interactive device code flow

Usage

default_credential_chain()

Value

A credential_chain object containing the default sequence of credential providers.

See Also

credential_chain(), get_token_provider()

default_non_auth Default No Authentication

Description

A pass-through credential function that performs no authentication. This function returns the re-
quest object unchanged, allowing API calls to be made without adding any authentication headers
or tokens.

Usage

default_non_auth(req)

Arguments

req An httr2::request() object

Value

The same httr2: :request() object, unmodified

30 default_response_handler

default_redirect_uri Get default OAuth redirect URI

Description

Constructs a redirect URI for OAuth flows. If the provided URI doesn’t have a port, assigns a
random port using httpuv: : randomPort ().

Usage

default_redirect_uri(redirect_uri = httr2::oauth_redirect_uri())

Arguments

redirect_uri A character string specifying the redirect URIL Defaults to httr2: :oauth_redirect_uri().

Value

A character string with the redirect URI

Examples

default_redirect_uri()

default_response_handler
Default Response Handler

Description

Default callback function for processing API response content. This function converts data frames
within lists to data.table objects for better performance and functionality, if the data.table package
is available.

Usage

default_response_handler()

Details

The function recursively processes list responses and converts any data.frame objects to data.table
objects using data.table::as.data.table(), but only if the data.table package is installed. If
data.table is not available, data frames are returned unchanged. Non-data.frame elements are always
returned unchanged.

DeviceCodeCredential 31

Value

A function that accepts parsed response content and returns processed content

Examples

Get the default handler
handler <- default_response_handler()

Use with a custom handler

custom_handler <- function(content) {
Your custom processing logic
content

DeviceCodeCredential Device code credential authentication

Description

Authenticates a user through the device code flow. This flow is designed for devices that don’t have
a web browser or have input constraints.

Details

The device code flow displays a code that the user must enter on another device with a web browser
to complete authentication. This is ideal for CLI applications, headless servers, or devices without
a browser.

The credential supports token caching to avoid repeated authentication. Tokens can be cached to
disk or in memory.

Super classes

azr::Credential -> azr::InteractiveCredential -> DeviceCodeCredential

Methods
Public methods:

* DeviceCodeCredential$new()

e DeviceCodeCredential$get_token()
* DeviceCodeCredential$reqg_auth()
* DeviceCodeCredential$clone()

Method new(): Create a new device code credential

Usage:

32 DeviceCodeCredential
DeviceCodeCredential$new(
scope = NULL,
tenant_id = NULL,
client_id = NULL,
use_cache = "disk",
offline = TRUE
)
Arguments:
scope A character string specifying the OAuth2 scope. Defaults to NULL.
tenant_id A character string specifying the Azure Active Directory tenant ID. Defaults to
NULL.
client_id A character string specifying the application (client) ID. Defaults to NULL.
use_cache A character string specifying the cache type. Use "disk” for disk-based caching or
"memory” for in-memory caching. Defaults to "disk".
offline A logical value indicating whether to request offline access (refresh tokens). Defaults
to TRUE.
Returns: A new DeviceCodeCredential object
Method get_token(): Get an access token using device code flow
Usage:
DeviceCodeCredential$get_token(reauth = FALSE)
Arguments:
reauth A logical value indicating whether to force reauthentication. Defaults to FALSE.
Returns: An httr2::oauth_token() object containing the access token
Method req_auth(): Add OAuth device code authentication to an httr2 request
Usage:
DeviceCodeCredential$req_auth(req)
Arguments:
req An httr2::request() object
Returns: The request object with OAuth device code authentication configured
Method clone(): The objects of this class are cloneable with this method.
Usage:
DeviceCodeCredential$clone(deep = FALSE)
Arguments:
deep Whether to make a deep clone.
Examples

DeviceCodeCredential requires an interactive session
Not run:

Create credential with default settings

cred <- DeviceCodeCredential$new()

get_credential_auth 33

Get an access token (will prompt for 'device code' flow)
token <- cred$get_token()

Force re-authentication
token <- cred$get_token(reauth = TRUE)

Use with httr2 request
req <- httr2::request("https://management.azure.com/subscriptions”)

req <- cred$req_auth(req)

End(Not run)

get_credential_auth Get Credential Authentication Function

Description

Creates a function that retrieves authentication tokens and formats them as HTTP Authorization
headers. This function handles credential discovery and returns a callable method that generates
Bearer token headers when invoked.

Usage

get_credential_auth(
scope = NULL,
tenant_id = NULL,
client_id = NULL,
client_secret = NULL,
use_cache = "disk",
offline = TRUE,
chain = default_credential_chain()

)

Arguments
scope Optional character string specifying the authentication scope.
tenant_id Optional character string specifying the tenant ID for authentication.
client_id Optional character string specifying the client ID for authentication.

client_secret Optional character string specifying the client secret for authentication.

use_cache Character string indicating the caching strategy. Defaults to "disk”. Options
include "disk” for disk-based caching or "memory” for in-memory caching.

offline Logical. If TRUE, adds ’offline_access’ to the scope to request a 'refresh_token’.
Defaults to TRUE.

chain A list of credential objects, where each element must inherit from the Credential
base class. Credentials are attempted in the order provided until get_token suc-
ceeds.

34 get_credential_provider

Value

A function that, when called, returns a named list with an Authorization element containing the
Bearer token, suitable for use with httr2: :req_headers().

See Also

get_token(), get_request_authorizer(), get_token_provider()

Examples

Not run:
Create an authentication function
auth_fn <- get_credential_auth(
scope = "https://graph.microsoft.com/.default”
)

Call it to get headers
auth_headers <- auth_fn()

Use with httr2
req <- httr2::request("https://graph.microsoft.com/vi.o/me") |>
httr2::req_headers(!!!auth_headers)

End(Not run)

get_credential_provider
Get Credential Provider

Description

Discovers and returns an authenticated credential object from a chain of credential providers. This
function attempts each credential in the chain until one successfully authenticates, returning the first
successful credential object.

Usage

get_credential_provider(
scope = NULL,
tenant_id = NULL,
client_id = NULL,
client_secret = NULL,
use_cache = "disk",
offline = TRUE,
oauth_host = NULL,
oauth_endpoint = NULL,
chain = NULL

get_request_authorizer

Arguments

scope
tenant_id
client_id
client_secret
use_cache

offline

oauth_host
oauth_endpoint
chain

Value

35

Optional character string specifying the authentication scope.

Optional character string specifying the tenant ID for authentication.
Optional character string specifying the client ID for authentication.
Optional character string specifying the client secret for authentication.

Character string indicating the caching strategy. Defaults to "disk"”. Options
include "disk” for disk-based caching or "memory” for in-memory caching.

Logical. If TRUE, adds ’offline_access’ to the scope to request a ‘refresh_token’.
Defaults to TRUE.

Optional character string specifying the OAuth host URL.
Optional character string specifying the OAuth endpoint.

A list of credential objects, where each element must inherit from the Credential
base class. Credentials are attempted in the order provided until get_token suc-
ceeds. If NULL, uses default_credential_chain().

A credential object that inherits from the Credential class and has successfully authenticated.

See Also

get_token_provider(), get_request_authorizer(), default_credential_chain()

Examples

Not run:

Get a credential provider with default settings
cred <- get_credential_provider(
scope = "https://graph.microsoft.com/.default”,
tenant_id = "my-tenant-id”

)

Use the credential to get a token
token <- cred$get_token()

End(Not run)

get_request_authorizer

Get Default Request Authorizer Function

Description

Creates a request authorizer function that retrieves authentication credentials and returns a callable
request authorization method. This function handles the credential discovery process and returns
the request authentication method from the discovered credential object.

36 get_request_authorizer

Usage

get_request_authorizer(
scope = NULL,
tenant_id = NULL,
client_id = NULL,
client_secret = NULL,
use_cache = "disk",
offline = TRUE,
chain = default_credential_chain()

)

Arguments
scope Optional character string specifying the authentication scope.
tenant_id Optional character string specifying the tenant ID for authentication.
client_id Optional character string specifying the client ID for authentication.

client_secret Optional character string specifying the client secret for authentication.

use_cache Character string indicating the caching strategy. Defaults to "disk”. Options
include "disk” for disk-based caching or "memory” for in-memory caching.

offline Logical. If TRUE, adds ’offline_access’ to the scope to request a 'refresh_token’.
Defaults to TRUE.

chain A list of credential objects, where each element must inherit from the Credential
base class. Credentials are attempted in the order provided until get_token suc-
ceeds.

Value

A function that authorizes HTTP requests with appropriate credentials when called.

See Also

get_token_provider(), get_token()

Examples

In non-interactive sessions, this function will return an error if the
environment is not setup with valid credentials. And in an interactive session
the user will be prompted to attempt one of the interactive authentication flows.
Not run:
reg_auth <- get_request_authorizer(
scope = "https://graph.microsoft.com/.default”
)
req <- req_auth(httr2::request("https://graph.microsoft.com/v1.0/me"))

End(Not run)

get_token

37

get_token

Get Authentication Token

Description

Retrieves an authentication token using the default token provider. This is a convenience function
that combines credential discovery and token acquisition in a single step.

Usage

get_token(
scope = NULL,

tenant_id = NULL,

client_id = NULL,

client_secret = NULL,

use_cache = "disk",

offline = TRUE,

chain = default_credential_chain()

Arguments

scope
tenant_id
client_id
client_secret

use_cache

offline

chain

Value

Optional character string specifying the authentication scope.

Optional character string specifying the tenant ID for authentication.
Optional character string specifying the client ID for authentication.
Optional character string specifying the client secret for authentication.

Character string indicating the caching strategy. Defaults to "disk"”. Options
include "disk” for disk-based caching or "memory” for in-memory caching.

Logical. If TRUE, adds ’offline_access’ to the scope to request a 'refresh_token’.
Defaults to TRUE.

A list of credential objects, where each element must inherit from the Credential
base class. Credentials are attempted in the order provided until get_token suc-
ceeds.

An httr2::oauth_token() object.

See Also

get_token_provider(), get_request_authorizer()

get_token_provider

Examples

In non-interactive sessions, this function will return an error if the
environment is not setup with valid credentials. And in an interactive session
the user will be prompted to attempt one of the interactive authentication flows.
Not run:
token <- get_token(
scope = "https://graph.microsoft.com/.default”,

tenant_id = "my-tenant-id",
client_id = "my-client-id",
client_secret = "my-secret”

End(Not run)

get_token_provider Get Default Token Provider Function

Description

Creates a token provider function that retrieves authentication credentials and returns a callable
token getter. This function handles the credential discovery process and returns the token acquisition
method from the discovered credential object.

Usage

get_token_provider(
scope = NULL,
tenant_id = NULL,
client_id = NULL,
client_secret = NULL,
use_cache = "disk",
offline = TRUE,
chain = default_credential_chain()

)

Arguments
scope Optional character string specifying the authentication scope.
tenant_id Optional character string specifying the tenant ID for authentication.
client_id Optional character string specifying the client ID for authentication.

client_secret Optional character string specifying the client secret for authentication.

use_cache Character string indicating the caching strategy. Defaults to "disk”. Options
include "disk” for disk-based caching or "memory” for in-memory caching.

offline Logical. If TRUE, adds ’offline_access’ to the scope to request a 'refresh_token’.
Defaults to TRUE.

is_hosted_session 39

chain A list of credential objects, where each element must inherit from the Credential
base class. Credentials are attempted in the order provided until get_token suc-
ceeds.
Value

A function that retrieves and returns an authentication token when called.

See Also

get_request_authorizer(), get_token()

Examples

In non-interactive sessions, this function will return an error if the
environment is not set up with valid credentials. In an interactive session
the user will be prompted to attempt one of the interactive authentication flows.
Not run:
token_provider <- get_token_provider(
scope = "https://graph.microsoft.com/.default”,

tenant_id = "my-tenant-id",
client_id = "my-client-id",
client_secret = "my-secret”

)

token <- token_provider()

End(Not run)

is_hosted_session Detect if running in a hosted session

Description
Determines whether the current R session is running in a hosted environment such as Google Colab
or RStudio Server (non-localhost).

Usage

is_hosted_session()

Details

This function checks for:

* Google Colab: presence of the COLAB_RELEASE_TAG environment variable

e RStudio Server: RSTUDIO_PROGRAM_MODE is "server" and RSTUDIO_HTTP_REFERER does not
contain "localhost"

40 is_hosted_session

Value

A logical value: TRUE if running in a hosted session (Google Colab or remote RStudio Server),
FALSE otherwise.

Examples

if (is_hosted_session()) {
message("Running in a hosted environment”)

3

Index

api_client, 2,8, 11
api_graph_resource, 11
api_resource, 6,8, 11
api_service, 8, 11
AuthCodeCredential, 9
az_cli_account_show, 15
az_cli_get_token, 16
az_cli_is_login, 17
az_cli_login, 18
az_cli_login(), 19
az_cli_logout, 19
azr::InteractiveCredential, 9, 3/
azr_graph_client, 11
AzureCLICredential, 12

ClientSecretCredential, 19
credential_chain, 8, 11,21
credential_chain(), 29

data.table::as.data.table(), 30
default_azure_client_id, 24
default_azure_client_id(), 26
default_azure_client_secret, 25
default_azure_config_dir, 25
default_azure_host, 26
default_azure_host(), 28
default_azure_oauth_client, 26
default_azure_scope, 27
default_azure_tenant_id, 27
default_azure_tenant_id(), 28
default_azure_url, 28
default_credential_chain, 29
default_credential_chain(), 21, 35
default_non_auth, 29
default_non_auth(), 3
default_redirect_uri, 30
default_redirect_uri(), 10
default_response_handler, 30
default_response_handler(), 4
DefaultCredential, /1,22

41

DeviceCodeCredential, 31

get_credential_auth, 33
get_credential_provider, 34
get_request_authorizer, 35
get_request_authorizer(), 34, 35, 37, 39
get_token, 37

get_token(), 34, 36, 39
get_token_provider, 38
get_token_provider(), 21, 22, 29, 34-37
glue::glue(), 4, 5

httpuv: :randomPort(), 30

httr2::oauth_client(), 26
httr2::oauth_redirect_uri(), 30
httr2::oauth_token(), 5, 10, 13, 16, 20, 23,
32,37
httr2::req_headers(), 34
httr2::reqg_perform(), 4, 5
httr2::request(), 4, 5, 10, 14, 20, 23, 29, 32
httr2::response(),4, 5

is_hosted_session, 39

lockEnvironment(), 11

	api_client
	api_resource
	api_service
	AuthCodeCredential
	azr_graph_client
	AzureCLICredential
	az_cli_account_show
	az_cli_get_token
	az_cli_is_login
	az_cli_login
	az_cli_logout
	ClientSecretCredential
	credential_chain
	DefaultCredential
	default_azure_client_id
	default_azure_client_secret
	default_azure_config_dir
	default_azure_host
	default_azure_oauth_client
	default_azure_scope
	default_azure_tenant_id
	default_azure_url
	default_credential_chain
	default_non_auth
	default_redirect_uri
	default_response_handler
	DeviceCodeCredential
	get_credential_auth
	get_credential_provider
	get_request_authorizer
	get_token
	get_token_provider
	is_hosted_session
	Index

