Package ‘WIPF’

January 8, 2026

Type Package
Title Weighted Iterative Proportional Fitting
Version 0.1.0-3

Description Implementation of the weighted iterative proportional fitting (WIPF) procedure for updat-
ing/adjusting a N-dimensional array given a weight structure and some target marginals.
Acknowledgements:

The author wish to thank Conselleria de Educacién, Cultura, Universidades y Em-

pleo (grant CIAIC0O/2023/031), Ministerio de Ciencia, Innovacién y Universi-

dades (grant PID2021-128228NB-100) and Fundacién Mapfre (grant 'Modelizacion espa-

cial e intra-anual de la mortalidad en Espafia. Una herramienta automaética para el cdlculo de pro-
ductos de vida') for supporting this research.

License GPL (>=2)
Encoding UTF-8
RoxygenNote 7.2.3
NeedsCompilation no

Author Jose M. Pavia [aut, cre] (ORCID:
<https://orcid.org/0000-0002-0129-726X>)

Maintainer Jose M. Pavia <jose.m.pavia@uv.es>
Repository CRAN
Date/Publication 2026-01-08 00:20:29 UTC

Contents
array2df . . . e e e 2
df2array e e e 2
WIPFE . . . 4
WIPFL o e 7
WIPF2 . . . e 8
WIPE3 . . . e 11

Index 15

https://orcid.org/0000-0002-0129-726X

2 df2array

array2df Array to long-format data frame

Description

Organizes the information in an array with N dimensions into a long-format data frame with N + 1
columns, where the last column contains the values of the array.

Usage

array2df(arr, value_name = "value")
Arguments

arr An array of N-dimensiones

value_name Name for the column containing the values of the array.
Author(s)

Jose M. Pavia, <pavia@uv.es>

df2array Long-format data frame to array

Description

Organizes the information in a long-format data frame with N factor columns and one value column
into a K-dimensional array (K < N), where the size of each dimension corresponds to the number
of levels of the respective factor.

Usage

df2array(
df,
margins = 1:(ncol(df) - 1),
values = ncol(df),
NA2zeros = TRUE,
names = TRUE,

df2array

Arguments

df

margins

values

NA2zeros

names

Value

A long-format data frame.

A vector of integers indicating which columns of df should be mapped to the
dimensions of the array, and in what order. By default, 1: (ncol(df)-1), mean-
ing all columns of df except the last are mapped to dimensions in the order they
appear in the data frame.

An integer specifying which column of df is mapped to the cell values of the
array. By default, ncol (df), meaning that the values of the last column of df
are used as the cell values.

A TRUE/FALSE argument indicating whether intersections of levels not present in
df should be imputed with zero. Default, TRUE.

A TRUE/FALSE argument indicating whether the level labels of the factors should
be used as dimension names (dimnames) for the array. Default is TRUE.

Other arguments to be passed to the function. Not currently used.

An array with length(margins) dimensions.

Author(s)

Jose M. Pavia, <pavia@uv.es>

Examples

x <- structure(list(LF1 = c(iL, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,

L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L,

2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,

2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L,

3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,

3L, 3L, 3L, 3L, 3L, 3L, 3L, 4L, 4L, 4L, 4L, 4L, 4L,

4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 4L),

LF2 = c(IL, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 3L,
3L, 3L, 3L, 3L, 3L, 4L, 4L, 4L, 4L, 4L, 4L, 1L, 1L,
L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L,
3L, 3L, 3L, 4L, 4L, 4L, 4L, 4L, 4L, 1L, 1L, 1L, 1L,

, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L,

3L, 4L, 4L, 4L, 4L, 4L, 4L, 1L, 1L, 1L, 1L, 1L, 1L,

2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 4L,
4L, 4L, 4L),

LF3 = c(IL, 2L, 3L, 4L, 5L, 6L, 1L, 2L, 3L, 4L, 5L, 6L, 1L,
2L, 3L, 4L, 5L, 6L, 1L, 2L, 3L, 4L, 5L, 6L, 1L, 2L,
3L, 4L, 5L, 6L, 1L, 2L, 3L, 4L, 5L, 6L, 1L, 2L, 3L,
4L, 5L, 6L, 1L, 2L, 3L, 4L, 5L, 6L, 1L, 2L, 3L, 4L,
5L, 6L, 1L, 2L, 3L, 4L, 5L, 6L, 1L, 2L, 3L, 4L, 5L,
6L, 1L, 2L, 3L, 4L, 5L, 6L, 1L, 2L, 3L, 4L, 5L, 6L,
1L, 2L, 3L, 4L, 5L, 6L, 1L, 2L, 3L, 4L, 5L, 6L, 1L,
2L, 3L, 4L, 5L, 6L),

4 WIPF

ix = c(0.8812, 0.8887, 1.0035, 0.8782, 1.1580, 1.3894, 0.7986,
1.0170, 1.0875, ©.9499, ©.9524, 1.1707, ©.4907, 1.4251,
0.8045, 0.7830, 0.7144, 0.9673, 0.5705, 6.8399, 0.6700,
0.6110, 2.1088, 0.7673, 0.8206, 1.0989, 1.0824, 0.7626,
1.1863, 1.6287, ©.8107, ©.8689, 1.0907, ©.9404, ©.9957,
1.2035, 0.5604, 0.9439, 0.8367, 0.7845, 0.8614, 1.0996,
9.3270, 1.1892, 0.6776, ©.5313, ©0.7801, 0.9651, 1.2576,
1.1939, 1.2554, 1.1225, 1.5741, 1.5718, ©.8092, 0.8460,
1.0899, 1.0742, 1.0668, 1.0680, 0.8204, 0.8988, 1.0015,
1.0354, 0.9541, 1.0639, 0.5223, 0.6963, 0.6749, 0.7230,
0.6616, 0.9579, 1.1752, 1.3359, 1.2824, 1.6836, 1.5313,
2.5715, 1.0579, ©.8304, 1.0632, 1.0016, ©.9370, 1.1711,
0.7874, 1.4360, 1.0949, 0.8646, 0.8430, 1.4736, 0.7795,
0.9362, 0.8489, 0.8246, 0.8449, 0.6331)),
row.names = c(NA, -96L), class = "data.frame")

example <- df2array(df = x, margins = c(2, 1, 3))
WIPF Weighted Iterative Proportional Fitting (WIPF) in N (greater than 1)

dimensions

Description

Implements the Weighted Iterative Proportional Fitting (WIPF) algorithm to adjust an N-dimensional
array subject to weighted marginal constraints.

Usage

WIPF (
seed,
weights,
margins,
indices,
normalize = TRUE,
tol = 107-6,
maxit = 1000,
full = FALSE,

Arguments

seed An N-dimensional array of non-negative values with the initial values.

weights An N-dimensional array of non-negative values with the weights associated to
each entry of the seed array.

margins A list of arrays of non-negative values of order less than N with the target
(weighted) marginal sums over the specified dimensions.

WIPF

indices

normalize

tol

maxit

full

Details

A list of vectors with the same length as margins, indicating the indices corre-
sponding to each array in margins.

TRUE/FALSE argument indicating whether the weights should be normalized across
all dimensions before constructing the weighted sums for comparison with the
margin values. Default is TRUE. Normalization is essential when adjusting a set
of indices for which the margins represent theoretical convex combinations of
the inner indices. This characterizes a typical context in which WIPF may be of
value.

Stopping criterion. The algorithm stops when the maximum difference between
the weighted sums of the values to be fitted and the margins is lower than the
value specified by tol. Default, 0.000001.

Stopping criterion. A positive integer number indicating the maximum number
of iterations allowed. Default, 1000. The algorithm will stop if the values to be
fitted still has not converged after these many iterations.

TRUE/FALSE argument indicating if either only the solution should be saved or a
more complete output. Default FALSE.

Other arguments to be passed to the function. Not currently used.

The function updates an initial N-dimensional array (referred to as the seed) using an N-dimensional
array of weights to align with a collection of lower-dimensional margins of different orders, some of
which may be missing. When all provided margins are compatible given the weights, the updated ar-
ray ensures that the corresponding weighted sums over all specified index subsets coincide with the
supplied margins. If the provided margins are incompatible given the weights, the functions WIPF1
and WIPF are applied to the provided margins to guarantee their compatibility with the weights. In
these cases, the margins are updated in increasing order of sub-indices, with higher-order indices

running faster.

Value

When full = FALSE an object similar to seed with the solution reached when the algorithm stops.
When full = TRUE a list with the following components:

sol

iter

dev.margins

margins

inputs

An object similar to seed with the solution reached at convergence (or when the
maximum number of iterations is reached).

Number of iterations when the algorithm stops.

A list of arrays similar to the margins output containing the absolute maximum
deviations between the values in margins and the corresponding weighted sums
of the values in sol.

A list of arrays similar margins with the actual margins used to reach the so-
lIution. Each array whose margins are compatible given the weights coincides
with the original array.

A list containing all the objects with the values used as arguments by the func-
tion.

6 WIPF

Note

Weighted Iterative Proportional Fitting is an extension of IPF. WIPF produces the same solutions
than IPF with all weights being ones and when they are not normalized. IPF is also known as RAS
in economics, raking in survey research or matrix scaling in computer science.

Author(s)

Jose M. Pavia, <pavia@uv.es>

Examples

s <- structure(c(@.9297, ©.9446, 0.8763, ©.92, 0.8655, 0.8583, 0.8132,
.8679, ©.7968, 0.7834, 0.721, ©.7859, 0.7747, 0.7851, 0.8632,
041, 1.5617, 1.5642, 1.4847, 1.5176, 1.4157, 1.3851, 1.3456,
.4012, 1.3017, 1.2626, 1.1904, 1.2668, 1.3203, 1.3181, 1.1965,
1654, 1.2219, 1.3863, 1.306, 1.1963, 1.1376, 1.35, 1.2595,
1289, 1.0456, 1.2863, 1.1274, 1.0208, 1.0542, 1.1272, 1.1594,
1668, 1.1931, 1.1328, 1.1221, 1.1011, 1.1298, 1.0454, 1.0573,
.0557, 1.0599, ©.973, 0.9545, ©.9721, 1.0489, 0.9934, 0.9382,
.876, 1.339, 1.1939, 1.0229, 1.0378, 1.0402, ©.9554, 0.9794,
.0089, ©0.9422, 0.8584, 0.8563, 0.9013, 0.9252, 0.8706, 0.8354,
.8071, ©.9737, 1.0008, 0.9593, 0.9257, 0.9556, 0.9534, ©.9313,
.9151, ©.883, 0.8731, 0.8285, 0.8309, 0.9131, 0.9258, 0.8467,
0.7785), .Dim = c(4L, 4L, 6L))
w <- structure(c(18520.3, 11776.3, 19479.5, 22497.6, 18968.7, 17263.7,
36494.7, 21707, 13406.3, 13570.4, 37746.1, 20593.2, 6595.6, 25444.6,
59868.2, 81777.2, 3380.4, 20610.7, 22247.3, 6800.9, 5236.3, 14877.8,
7205, 5028.4, 1130.7, 6603.2, 4007.4, 2620.5, 374.8, 1624.3,
4963.7, 9551.3, 31806, 93615.9, 121986.6, 44640.3, 32110.6, 95814.4,

O O W ® | 8 4 a A g

72827.9, 30922.5, 43197.3, 72050.8, 66673.4, 40370.1, 31488.2,
55014.9, 69457.2, 80021.2, 17701.7, 8765.2, 11790.9, 3872.8,
30544.5, 12141.2, 12415.2, 9471.9, 36138.6, 19198.1, 23120.1,
15597.9, 12140.2, 8058.3, 20948.3, 19380.2, 78543.9, 86503.6,
28727.8, 29208.7, 26300.6, 42363, 20786.6, 14380.3, 9493.5, 17816.2,
19844.1, 10898.2, 1419, 4211.5, 20615, 22748.2, 3365.8, 2639.8,

2433.3, 930.5, 22119.6, 31022.7, 12748.5, 10161.4, 15450.2, 32747.1,
22596.4, 13228.1, 17289.2, 30189.2, 31476.6, 15338.7),
.Dim = c(4L, 4L, 6L))
ml <- c(1.025527, 1.018229, 0.969744, ©.994998)
m2 <- c(1.111023, 1.030213, 0.935041, ©.906709)
m3 <- c(0.810568, 1.375203, 1.07096, 1.044461, 0.949441, 0.915284)
ml2 <- structure(c(1.061059, 1.120345, 1.097519, 1.188501, 1.017091,
0.967245, 1.03447, 1.18867, ©.9797, 0.900885, 0.85575, 1.070772,
1.041953, 1.074653, ©.887316, 0.791906), .Dim = c(4L, 4L))
mi3 <- structure(c(0.779029, 0.865343, 0.757887, 0.852708, 1.351367,
1.409585, 1.350907, 1.361528, 1.091867, 1.107661, ©.99364, 1.127478,
1.13439, 0.948428, 1.075919, 0.916096, 1.031958, 0.835103, 1.006321,
0.982888, 0.86109, 0.976673, 0.961731, 0.764211), .Dim = c(4L, 6L))
m23 <- structure(c(0.962955, 0.880973, 0.798545, 0.714783, 1.547556,
1.277098, 1.149491, 1.210108, 1.186342, 1.084436, 0.976822, 1.003611,
1.092564, 1.066306, 1.038601, 0.996779, ©.971751, 1.016173, 0.867197,
0.803929, ©.831913, ©.933863, 0.857392, 0.960169), .Dim = c(4L, 6L))

WIPF1

m <- list(ml, m3, m12, m23)
ind <- list(1, 3, c(1, 2), c(2, 3))

example <- WIPF(seed = s, weights = w, margins = m, indices = ind)

WIPF1

Weighted Iterative Proportional Fitting (WIPF) in one dimension

Description

Implements WIPF in one dimension. This function updates, using a set of weights, an initial 1-
dimensional array, a vector (referred as the seed), to match a given value (referred as the margin),
in such as way that the weighted sum of the updated values coincide with the margin.

Usage
WIPF1(
seed,
weights,
margin = 1,
normalize = TRUE,
tol = 10*-6,
maxit = 1000,
full = FALSE,
)
Arguments
seed A vector of non-negative values with the initial values.
weights A vector of non-negative values with the weights associated to each component
of seed and with the same length as seed.
margin A non-negative scalar with the (weighted) marginal total to be fitted. Default, 1.
normalize TRUE/FALSE argument indicating whether weights should be normalized to sum
1 before building the weighted sum to be compared with the margin value. De-
fault, TRUE. Normalization is necessary when we want to adjust a set of indexes
for which the margin correspond to other index that is a theoretical convex com-
bination of the inner indexes. This characterizes a typical context where WIPF
could be of value.
tol Stopping criterion. The algorithm stops when the maximum absolute difference

between the solutions obtained in two consecutive iteration is lower than the
value specified by tol. Default, 0.000001.

8 WIPF2
maxit Stopping criterion. A positive integer number indicating the maximum number
of iterations allowed. Default, 1000. The algorithm will stop if the values to be
fitted still has not converged after this many iterations.
full TRUE/FALSE argument indicating if either only the solution should be shown or
a more complete output.
Other arguments to be passed to the function. Not currently used.
Value
When full = FALSE an object similar to seed with the solution reached when the algorithm stops.
When full = TRUE a list with the following components:
sol An object similar to seed with the solution reached at convergence (or when the
maximum number of iterations is reached).
iter Number of iterations when the algorithm stops.
error.margins An object similar to margin with the absolute differences between the values in
margin and the weighted sum of the values in sol.
inputs A list containing all the objects with the values used as arguments by the func-
tion.
Note
Weighted Iterative proportional fitting is an extension of IPF. WIPF produces the same solutions
than IPF with all weights being ones and when they are not normalized. IPF is also known as RAS
in economics, raking in survey research or matrix scaling in computer science.
Author(s)
Jose M. Pavia, <pavia@uv.es>
Examples
s <- c(1.0595723, 0.9754876, 0.8589494, 0.8589123)
w <- c(651301.9, 581185.1, 555610.8, 602595.6)
example <- WIPF1(seed = s, weights = w)
WIPF2 Weighted Iterative Proportional Fitting (WIPF) in two dimensions

WIPF2 9

Description

Implements WIPF in two dimensions. This function updates an initial 2-dimensional array (a ma-
trix, referred to as the seed) using a matrix of weights to align with a set of two vectors (referred
to as the margins), where one of them can be missing. When marginl and margin2 are compat-
ible given the weights, the updated values ensure that the weighted sum across columns matches
marginl and the weighted sum across rows matches margin2. If the margins are incompatible
given the weights, the function WIPF1 is applied to the initial margins to make them compatible.
In those cases, margins are updated (are made compatible) in increasing order of sub-indices (i.e.,
margin2 is adjusted to make it compatible with marginT).

Usage
WIPF2(
seed,
weights,
margini,
margin2,
normalize = TRUE,
tol = 10*-6,
maxit = 1000,
full = FALSE,
)
Arguments
seed A (RxC) matrix of non-negative values with the initial values.
weights A (RxC) matrix of non-negative values with the weights associated to each entry
of the matrix.
margini A R-length vector of positive values with the target (weighted) marginal sums
across columns to be fitted.
margin2 A C-length vector of positive values with the target (weighted) marginal sums
across rows to be fitted.
normalize TRUE/FALSE argument indicating whether the weights should be normalized (across
all dimensions, for either row or column weights to sum 1) before constructing
the weighted sums for comparison with the margin values. Default, TRUE. Nor-
malization is essential when adjusting a set of indexes where the margins repre-
sent theoretical convex combinations of the inner indexes. This characterizes a
typical context where WIPF could be of value.
tol Stopping criterion. The algorithm stops when the maximum difference between

the weighted sum(s) of the values to be fitted and the margin(s) is lower than the
value specified by tol. Default, 0.000001.

maxit Stopping criterion. A positive integer number indicating the maximum number
of iterations allowed. Default, 1000. The algorithm will stop if the values to be
fitted still has not converged after this many iterations.

full TRUE/FALSE argument indicating if either only the solution should be shown or
a more complete output.

10 WIPF2

Other arguments to be passed to the function. Not currently used.

Value

When full = FALSE an object similar to seed with the solution reached when the algorithm stops.
When full = TRUE a list with the following components:

sol An object similar to seed with the solution reached at convergence (or when the
maximum number of iterations is reached).

iter Number of iterations when the algorithm stops.

dev.margins A list with a set of objects similar to the margins with absolute maximum devi-

ations between the values in margins and the corresponding weighted sums of
the values in sol.

margini A R-length vector of positive values with the actual marginl object used to reach
the solution. This coincides with margini even when all the margins are not
compatible given the weights.

margin2 A C-length vector of positive values with the actual margin2 object used to reach
the solution. This coincides with margin2 when all the margins are compatible
given the weights.

inputs A list containing all the objects with the values used as arguments by the func-
tion.

Note

Weighted Iterative proportional fitting is an extension of IPF. WIPF produces the same solutions
than IPF with all weights being ones and when they are not normalized. IPF is also known as RAS
in economics, raking in survey research or matrix scaling in computer science.

Author(s)

Jose M. Pavia, <pavia@uv.es>

Examples

s <- structure(c(1.1279, 1.1304, 1.0304, 0.8554, 1.5606, 1.4171, 1.2862,
1.2472, 1.0746, 1.0796, 0.9806, 0.928, 1.1607, 1.2436, 1.2191,
1.0786, 1.0194, 1.1716, ©.9937, 0.8611, 1.0172, 1.2511, 1.1606,
1.1959), .Dim = c(4L, 6L))

w <- structure(c(72161.97, 93725.94, 84408.83, 172774.13, 52875.08,
31936.92, 14191.44, 12595.46, 291698.94, 231408.32,
221763.43, 235217.74, 42028.56, 64458.09, 93443.13,
60348.74, 222482.04, 103695.94, 57066.82, 48657.48,
9572.75, 75745.02, 83912.38, 94019.92), .Dim = c(4L, 6L))

ml <- c(1.110737, 1.029947, ©.934799, 0.906475)

m2 <- c(0.810992, 1.375921, 1.071519, 1.045006, 0.949938, 0.915762)

example <- WIPF2(seed = s, weights = w, marginl = m1, margin2 = m2, full = TRUE)

WIPF3

11

WIPF3

Weighted Iterative Proportional Fitting (WIPF) in three dimensions

Description

Implements WIPF in three dimensions. This function updates an initial 3D-array (referred to as the
seed) using a 3D-array of weights to align with a set of three vectors (referred to as 1D-margins)
and three matrices (referred to as 2D-margins), where some of them can be missing. When all
provided margins are compatible given the weights, the updated values ensure that the weighted
sums across rows, columns, layers, and combinations of (row, column), (row, layer), and (column,
layer) coincide with the provided margins. If the provided margins are incompatible given the
weights, the functions WIPF1 and WIPF2 are applied to the initial margins to make the margins
compatible with the weights. In those cases, the margins are updated (are made compatible) in
increasing order of sub-indices and with the second sub-indices running faster.

Usage

WIPF3(
seed,
weights,
margini,
margin2,
margin3,
margini2,
margini3,
margin23,

normalize = TRUE,

tol = 10*-6,
maxit = 1000,
full = FALSE,

Arguments

seed

weights

marginl

margin2

margin3

margini2

A (RxCxL) array of non-negative values with the initial values.

A (RxCxL) array of non-negative values with the weights associated to each
entry of the seed array.

A R-length vector of positive values with the target (weighted) marginal sum
across both layers and columns to be fitted.

A C-length vector of positive values with the target (weighted) marginal sum
across both rows and layers to be fitted.

A L-length vector of positive values with the target (weighted) marginal sum
across both rows and columns to be fitted.

A RxC matrix of positive values with the target (weighted) marginal sum across
layers to be fitted.

12

margini3

margin23

normalize

tol

maxit

full

Value

WIPF3

A RxL matrix of positive values with the target (weighted) marginal sum across
columns to be fitted.

A CxL matrix of positive values with the target (weighted) marginal sum across
both rows to be fitted.

TRUE/FALSE argument indicating whether the weights should be normalized across
all dimensions (for either row, column, layer, row-column, row-layer or column-
layer weights to sum 1) before constructing the weighted sums for comparison
with the margin values. Default, TRUE. Normalization is essential when adjust-
ing a set of indexes where the margins represent theoretical convex combinations
of the inner indexes. This characterizes a typical context where WIPF could be
of value.

Stopping criterion. The algorithm stops when the maximum difference between
the weighted sum(s) of the values to be fitted and the margin(s) is lower than the
value specified by tol. Default, 0.000001.

Stopping criterion. A positive integer number indicating the maximum number
of iterations allowed. Default, 1000. The algorithm will stop if the values to be
fitted still has not converged after this many iterations.

TRUE/FALSE argument indicating if either only the solution should be shown or
a more complete output.

Other arguments to be passed to the function. Not currently used.

When full = FALSE an object similar to seed with the solution reached when the algorithm stops.
When full = TRUE a list with the following components:

sol

iter

dev.margins

margini

margin?2

margin3

margini2

An object similar to seed with the solution reached at convergence (or when the
maximum number of iterations is reached).

Number of iterations when the algorithm stops.

A list with a set of objects similar to the margins with absolute maximum devi-
ations between the values in margins and the corresponding weighted sums of
the values in sol.

A R-length vector of positive values with the actual marginl object used to reach
the solution. This coincides with margin1 even when all the margins are not
compatible given the weights.

A C-length vector of positive values with the actual margin2 object used to reach
the solution. This coincides with margin2 when all the margins are compatible
given the weights.

A L-length vector of positive values with the actual margin3 object used to reach
the solution. This coincides with margin3 when all the margins are compatible
given the weights.

A RxC matrix of positive values with the actual marginl2 object used to reach
the solution. This coincides with margin12 when all the margins are compatible
given the weights.

WIPF3 13

margini3 A RxL matrix of positive values with the actual marginl3 object used to reach
the solution. This coincides with margin13 when all the margins are compatible
given the weights.

margin23 A CxL matrix of positive values with the actual margin23 object used to reach
the solution. This coincides with margin23 when all the margins are compatible
given the weights.

inputs A list containing all the objects with the values used as arguments by the func-
tion.

Note

Weighted Iterative proportional fitting is an extension of IPF. WIPF produces the same solutions
than IPF with all weights being ones and when they are not normalized. IPF is also known as RAS
in economics, raking in survey research or matrix scaling in computer science.

Author(s)

Jose M. Pavia, <pavia@uv.es>

Examples

s <- structure(c(0.9297, ©.9446, 0.8763, 0.92, 0.8655, 0.8583, 0.8132,
.8679, ©.7968, 0.7834, 0.721, ©.7859, 0.7747, 0.7851, @.8632,
.041, 1.5617, 1.5642, 1.4847, 1.5176, 1.4157, 1.3851, 1.3456,
.4012, 1.3017, 1.2626, 1.1904, 1.2668, 1.3203, 1.3181, 1.1965,
1654, 1.2219, 1.3863, 1.306, 1.1963, 1.1376, 1.35, 1.2595,
1289, 1.0456, 1.2863, 1.1274, 1.0208, 1.0542, 1.1272, 1.1594,
1668, 1.1931, 1.1328, 1.1221, 1.1011, 1.1298, 1.0454, 1.0573,
.0557, 1.0599, 0.973, 0.9545, ©.9721, 1.0489, 0.9934, 0.9382,
.876, 1.339, 1.1939, 1.0229, 1.0378, 1.0402, ©.9554, 0.9794,
.0089, ©.9422, 0.8584, 0.8563, 0.9013, 0.9252, 0.8706, 0.8354,
.8071, ©0.9737, 1.0008, 0.9593, ©.9257, 0.9556, 0.9534, 0.9313,
.9151, ©.883, 0.8731, 0.8285, 0.8309, ©.9131, 0.9258, 0.8467,
0.7785), .Dim = c(4L, 4L, 6L))
w <- structure(c(18520.3, 11776.3, 19479.5, 22497.6, 18968.7, 17263.7,
36494.7, 21707, 13406.3, 13570.4, 37746.1, 20593.2, 6595.6, 25444.6,
59868.2, 81777.2, 3380.4, 20610.7, 22247.3, 6800.9, 5236.3, 14877.8,
7205, 5028.4, 1130.7, 6603.2, 4007.4, 2620.5, 374.8, 1624.3,
4963.7, 9551.3, 31806, 93615.9, 121986.6, 44640.3, 32110.6, 95814.4,

O O W ® | 2 4 A g

72827.9, 30922.5, 43197.3, 72050.8, 66673.4, 40370.1, 31488.2,
55014.9, 69457.2, 80021.2, 17701.7, 8765.2, 11790.9, 3872.8,
30544.5, 12141.2, 12415.2, 9471.9, 36138.6, 19198.1, 23120.1,
15597.9, 12140.2, 8058.3, 20948.3, 19380.2, 78543.9, 86503.6,
28727.8, 29208.7, 26300.6, 42363, 20786.6, 14380.3, 9493.5, 17816.2,
19844.1, 10898.2, 1419, 4211.5, 20615, 22748.2, 3365.8, 2639.8,

2433.3, 930.5, 22119.6, 31022.7, 12748.5, 10161.4, 15450.2, 32747.1,
22596.4, 13228.1, 17289.2, 30189.2, 31476.6, 15338.7),
.Dim = c(4L, 4L, 6L))

ml <- c(1.025527, 1.018229, 0.969744, 0.994998)

m2 <- c(1.111023, 1.030213, 0.935041, 0.906709)

m3 <- c(0.810568, 1.375203, 1.07096, 1.044461, 0.949441, 0.915284)

14

WIPF3

ml2 <- structure(c(1.061059, 1.120345, 1.097519, 1.188501, 1.017091,
0.967245, 1.03447, 1.18867, ©.9797, 0.900885, 0.85575, 1.070772,
1.041953, 1.074653, 0.887316, 0.791906), .Dim = c(4L, 4L))

ml13 <- structure(c(@.779029, 0.865343, 0.757887, 0.852708, 1.351367,
1.409585, 1.350907, 1.361528, 1.091867, 1.107661, ©.99364, 1.127478,
1.13439, 0.948428, 1.075919, ©.916096, 1.031958, 0.835103, 1.006321,
0.982888, 0.86109, 0.976673, 0.961731, 0.764211), .Dim = c(4L, 6L))

m23 <- structure(c(0.962955, 0.880973, 0.798545, 0.714783, 1.547556,
1.277098, 1.149491, 1.210108, 1.186342, 1.084436, ©.976822, 1.003611,
1.092564, 1.066306, 1.038601, 0.996779, ©.971751, 1.016173, 0.867197,
0.803929, 0.831913, ©.933863, 0.857392, 0.960169), .Dim = c(4L, 6L))

example <- WIPF3(seed = s, weights = w, margin3 = m3, margini2 = m12, margin13 = m13)

Index

array2df, 2
df2array, 2

WIPF, 4

WIPF1,7
WIPF2, 8
WIPF3, 11

15

	array2df
	df2array
	WIPF
	WIPF1
	WIPF2
	WIPF3
	Index

