SVG 1.0.0
First Release
New Features
- Unified interface:
CalSVG() function
provides a single entry point for all SVG detection methods
- Six SVG detection methods implemented with
consistent output format:
CalSVG_MERINGUE(): Moran’s I with binary spatial
network
CalSVG_Seurat(): Moran’s I with inverse distance
weights
CalSVG_binSpect(): Binary spatial enrichment test
(Giotto)
CalSVG_SPARKX(): Non-parametric kernel-based test
CalSVG_nnSVG(): Nearest-neighbor Gaussian
processes
CalSVG_MarkVario(): Mark variogram method
Spatial Network Construction
buildSpatialNetwork(): Build spatial neighborhood
networks using Delaunay triangulation or KNN
getSpatialNeighbors_Delaunay(): Delaunay
triangulation-based network
getSpatialNeighbors_KNN(): K-nearest neighbors
network
Statistical Utilities
moranI(): Calculate Moran’s I statistic
moranI_test(): Hypothesis testing for spatial
autocorrelation
ACAT_combine(): Aggregated Cauchy Association Test for
p-value combination
binarize_expression(): Multiple methods for expression
binarization
Data Simulation
simulate_spatial_data(): Generate simulated spatial
transcriptomics data with known SVGs
- Support for multiple spatial patterns: gradient, hotspot, periodic,
cluster
- C++ implementation via Rcpp/RcppArmadillo for computationally
intensive operations
- Parallel processing support via
n_threads
parameter
- Efficient memory usage for large-scale data
Documentation
- Comprehensive vignette with mathematical background
- Complete function documentation with examples
- Benchmark comparison between methods
Dependencies
- Core: Matrix, Rcpp, RcppArmadillo
- Optional: geometry, RANN, BRISC, CompQuadForm, BiocParallel,
spatstat
Authors
- Zaoqu Liu (maintainer) - liuzaoqu@163.com