
Package ‘SSGL’
January 20, 2025

Type Package

Title Spike-and-Slab Group Lasso for Group-Regularized Generalized
Linear Models

Version 1.0

Date 2023-06-25

Author Ray Bai

Maintainer Ray Bai <raybaistat@gmail.com>

Description Fits group-regularized generalized linear models (GLMs) using the spike-and-
slab group lasso (SSGL) prior intro-
duced by Bai et al. (2022) <doi:10.1080/01621459.2020.1765784> and ex-
tended to GLMs by Bai (2023) <arXiv:2007.07021>. This package supports fit-
ting the SSGL model for the following GLMs with group sparsity: Gaussian linear regression, bi-
nary logistic regression, Poisson regression, negative binomial regression, and gamma regression.
Stand-alone functions for group-regularized negative binomial regression and group-
regularized gamma regression are also available, with the option of employ-
ing the group lasso penalty of Yuan and Lin (2006) <doi:10.1111/j.1467-
9868.2005.00532.x>, the group minimax concave penalty (MCP) of Bre-
heny and Huang <doi:10.1007/s11222-013-9424-2>, or the group smoothly clipped absolute de-
viation (SCAD) penalty of Breheny and Huang (2015) <doi:10.1007/s11222-013-9424-2>.

License GPL-3

Depends R (>= 3.6.0)

Imports stats, MASS, pracma, grpreg

NeedsCompilation yes

Repository CRAN

Date/Publication 2023-06-27 16:40:02 UTC

Contents
cv_gamma_grpreg . 2
cv_nb_grpreg . 4
cv_SSGL . 6
gamma_grpreg . 8

1

https://doi.org/10.1080/01621459.2020.1765784
https://arxiv.org/abs/2007.07021
https://doi.org/10.1111/j.1467-9868.2005.00532.x
https://doi.org/10.1111/j.1467-9868.2005.00532.x
https://doi.org/10.1007/s11222-013-9424-2
https://doi.org/10.1007/s11222-013-9424-2

2 cv_gamma_grpreg

nb_grpreg . 11
SSGL . 14

Index 19

cv_gamma_grpreg Cross-validation for Group-Regularized Gamma Regression

Description

This function implements K-fold cross-validation for group-regularized gamma regression with a
known shape parameter ν and the log link. The cross-validation error (CVE) and cross-validation
standard error (CVSE) are computed using the deviance for gamma regression.

For a description of group-regularized gamma regression, see the description for the gamma_grpreg
function. Our implementation is based on the least squares approximation approach of Wang and
Leng (2007), and hence, the function does not allow the total number of covariates p to be greater
than K−1

K × sample size, where K is the number of folds.

Note that the gamma_grpreg function also returns the generalized information criterion (GIC) of
Fan and Tang (2013) for each regularization parameter in lambda, and the GIC can also be used for
model selection instead of cross-validation.

Usage

cv_gamma_grpreg(Y, X, groups, gamma_shape=1, penalty=c("gLASSO","gSCAD","gMCP"),
n_folds=10, group_weights, taper, n_lambda=100, lambda,
max_iter=10000, tol=1e-4)

Arguments

Y n× 1 vector of strictly positive, continuous responses for training data.

X n × p design matrix for training data, where the jth column corresponds to the
jth overall feature.

groups p-dimensional vector of group labels. The jth entry in groups should contain ei-
ther the group number or the factor level name that the feature in the jth column
of X belongs to. groups must be either a vector of integers or factors.

gamma_shape known shape parameter ν in Gamma(µi, ν) distribution for the responses. De-
fault is gamma_shape=1.

penalty group regularization method to use on the groups of regression coefficients. The
options are "gLASSO", "gSCAD", "gMCP". To implement cross-validation for
gamma regression with the SSGL penalty, use the cv_SSGL function.

n_folds number of folds K to use in K-fold cross-validation. Default is n_folds=10.

group_weights group-specific, nonnegative weights for the penalty. Default is to use the square
roots of the group sizes.

taper tapering term γ in group SCAD and group MCP controlling how rapidly the
penalty tapers off. Default is taper=4 for group SCAD and taper=3 for group
MCP. Ignored if "gLASSO" is specified as the penalty.

cv_gamma_grpreg 3

n_lambda number of regularization parameters L. Default is n_lambda=100.

lambda grid of L regularization parameters. The user may specify either a scalar or a
vector. If the user does not provide this, the program chooses the grid automati-
cally.

max_iter maximum number of iterations in the algorithm. Default is max_iter=10000.

tol convergence threshold for algorithm. Default is tol=1e-4.

Value

The function returns a list containing the following components:

lambda L× 1 vector of regularization parameters lambda used to fit the model. lambda
is displayed in descending order.

cve L× 1 vector of mean cross-validation error across all K folds. The kth entry in
cve corresponds to the kth regularization parameter in lambda.

cvse L×1 vector of standard errors for cross-validation error across all K folds. The
kth entry in cvse corresponds to the kth regularization parameter in lambda.

lambda_min The value in lambda that minimizes mean cross-validation error cve.

min_index The index of lambda_min in lambda.

References

Breheny, P. and Huang, J. (2015). "Group descent algorithms for nonconvex penalized linear and
logistic regression models with grouped predictors." Statistics and Computing, 25:173-187.

Fan, Y. and Tang, C. Y. (2013). "Tuning parameter selection in high-dimensional penalized likeli-
hood." Journal of the Royal Statistical Society: Series B (Statistical Methodology), 75:531-552.

Wang, H. and Leng, C. (2007). "Unified LASSO estimation by least squares approximation." Jour-
nal of the American Statistical Association, 102:1039-1048.

Yuan, M. and Lin, Y. (2006). "Model selection and estimation in regression with grouped variables."
Journal of the Royal Statistical Society: Series B (Statistical Methodology), 68:49-67.

Examples

Generate data
set.seed(12345)
X = matrix(runif(100*11), nrow=100)
n = dim(X)[1]
groups = c(1,1,1,2,2,2,3,3,4,5,5)
beta_true = c(-1,1,1,0,0,0,0,0,0,1.5,-1.5)

Generate responses from gamma regression with known shape parameter 1
eta = crossprod(t(X), beta_true)
shape = 1
Y = rgamma(n, rate=shape/exp(eta), shape=shape)

10-fold cross-validation for group-regularized gamma regression
with the group LASSO penalty
gamma_cv = cv_gamma_grpreg(Y, X, groups, penalty="gLASSO")

4 cv_nb_grpreg

Plot cross-validation curve
plot(gamma_cv$lambda, gamma_cv$cve, type="l", xlab="lambda", ylab="CVE")
lambda which minimizes mean CVE
gamma_cv$lambda_min
index of lambda_min in lambda
gamma_cv$min_index

cv_nb_grpreg Cross-validation for Group-Regularized Negative Binomial Regres-
sion

Description

This function implements K-fold cross-validation for group-regularized negative binomial regres-
sion with a known size parameter α and the log link. The cross-validation error (CVE) and cross-
validation standard error (CVSE) are computed using the deviance for negative binomial regression.

For a description of group-regularized negative binomial regression, see the description for the
nb_grpreg function. Our implementation is based on the least squares approximation approach of
Wang and Leng (2007), and hence, the function does not allow the total number of covariates p to
be greater than K−1

K × sample size, where K is the number of folds.

Note that the nb_grpreg function also returns the generalized information criterion (GIC) of Fan
and Tang (2013) for each regularization parameter in lambda, and the GIC can also be used for
model selection instead of cross-validation.

Usage

cv_nb_grpreg(Y, X, groups, nb_size=1, penalty=c("gLASSO","gSCAD","gMCP"),
n_folds=10, group_weights, taper, n_lambda=100, lambda,
max_iter=10000, tol=1e-4)

Arguments

Y n× 1 vector of strictly nonnegative integer responses for training data.

X n × p design matrix for training data, where the jth column corresponds to the
jth overall feature.

groups p-dimensional vector of group labels. The jth entry in groups should contain ei-
ther the group number or the factor level name that the feature in the jth column
of X belongs to. groups must be either a vector of integers or factors.

nb_size known size parameter α in NB(α, µi) distribution for the responses. Default is
nb_size=1.

penalty group regularization method to use on the groups of regression coefficients. The
options are "gLASSO", "gSCAD", "gMCP". To implement cross-validation for
gamma regression with the SSGL penalty, use the cv_SSGL function.

n_folds number of folds K to use in K-fold cross-validation. Default is n_folds=10.

cv_nb_grpreg 5

group_weights group-specific, nonnegative weights for the penalty. Default is to use the square
roots of the group sizes.

taper tapering term γ in group SCAD and group MCP controlling how rapidly the
penalty tapers off. Default is taper=4 for group SCAD and taper=3 for group
MCP. Ignored if "gLASSO" is specified as the penalty.

n_lambda number of regularization parameters L. Default is n_lambda=100.

lambda grid of L regularization parameters. The user may specify either a scalar or a
vector. If the user does not provide this, the program chooses the grid automati-
cally.

max_iter maximum number of iterations in the algorithm. Default is max_iter=10000.

tol convergence threshold for algorithm. Default is tol=1e-4.

Value

The function returns a list containing the following components:

lambda L× 1 vector of regularization parameters lambda used to fit the model. lambda
is displayed in descending order.

cve L× 1 vector of mean cross-validation error across all K folds. The kth entry in
cve corresponds to the kth regularization parameter in lambda.

cvse L×1 vector of standard errors for cross-validation error across all K folds. The
kth entry in cvse corresponds to the kth regularization parameter in lambda.

lambda_min The value in lambda that minimizes mean cross-validation error cve.

min_index The index of lambda_min in lambda.

References

Breheny, P. and Huang, J. (2015). "Group descent algorithms for nonconvex penalized linear and
logistic regression models with grouped predictors." Statistics and Computing, 25:173-187.

Fan, Y. and Tang, C. Y. (2013). "Tuning parameter selection in high dimensional penalized likeli-
hood." Journal of the Royal Statistical Society: Series B (Statistical Methodology), 75:531-552.

Wang, H. and Leng, C. (2007). "Unified LASSO estimation by least squares approximation." Jour-
nal of the American Statistical Association, 102:1039-1048.

Yuan, M. and Lin, Y. (2006). "Model selection and estimation in regression with grouped variables."
Journal of the Royal Statistical Society: Series B (Statistical Methodology), 68:49-67.

Examples

Generate data
set.seed(1234)
X = matrix(runif(100*14), nrow=100)
n = dim(X)[1]
groups = c(1,1,1,2,2,2,2,3,3,4,5,5,6,6)
beta_true = c(-1,1,1,0,0,0,0,-1,1,0,0,0,-1.5,1.5)

Generate count responses from negative binomial regression

6 cv_SSGL

eta = crossprod(t(X), beta_true)
Y = rnbinom(n, size=1, mu=exp(eta))

10-fold cross-validation for group-regularized negative binomial
regression with the group MCP penalty
nb_cv = cv_nb_grpreg(Y, X, groups, penalty="gMCP")

Plot cross-validation curve
plot(nb_cv$lambda, nb_cv$cve, type="l", xlab="lambda", ylab="CVE")
lambda which minimizes mean CVE
nb_cv$lambda_min
index of lambda_min in lambda
nb_cv$min_index

cv_SSGL Cross-Validation for Spike-and-Slab Group Lasso in Group-
Regularized Generalized Linear Models (GLMs)

Description

This function implements K-fold cross-validation for group-regularized GLMs with the spike-and-
slab group lasso (SSGL) penalty of Bai et al. (2022) and Bai (2023). The identity link function is
used for Gaussian regression, the logit link is used for binomial regression, and the log link is used
for Poisson, negative binomial, and gamma regression.

Although one can choose lambda0 from cross-validation with this function, it can be very time-
consuming to do so if the number of groups G and/or the number of total covariantes p is moderate to
large. It is strongly recommended that the user simply run the SSGL function on the training dataset
and select the final model according to the lambda0 that minimizes the generalized information
criterion (GIC). See description of the SSGL function for more details.

Usage

cv_SSGL(Y, X, groups,
family=c("gaussian","binomial","poisson","negativebinomial","gamma"),
nb_size=1, gamma_shape=1, group_weights, n_folds=5, n_lambda0=25,
lambda0, lambda1=1, a=1, b=dim(X)[2],
max_iter=100, tol=1e-6, print_fold=TRUE)

Arguments

Y n× 1 vector of responses for training data.

X n × p design matrix for training data, where the jth column corresponds to the
jth overall feature.

groups p-dimensional vector of group labels. The jth entry in groups should contain ei-
ther the group number or the factor level name that the feature in the jth column
of X belongs to. groups must be either a vector of integers or factors.

cv_SSGL 7

family exponential dispersion family of the response variables. Allows for "gaussian",
"binomial", "poisson", "negativebinomial", and "gamma". Note that for
"negativebinomial", the size parameter must be specified in advance, while
for "gamma", the shape parameter must be specified in advance.

nb_size known size parameter α in NB(α, µi) distribution for the responses if the user
specifies family="negativebinomial". Default is nb_size=1. Ignored if
family is not "negativebinomial".

gamma_shape known shape parameter ν in G(µi, ν) distribution for the responses if the user
specifies family="gamma". Default is gamma_shape=1. Ignored if family is
not "gamma".

group_weights group-specific, nonnegative weights for the penalty. Default is to use the square
roots of the group sizes.

n_folds number of folds K to use in K-fold cross-validation. Default is n_folds=5.

n_lambda0 number of spike hyperparameters L. Default is n_lambda0=25.

lambda0 grid of L spike hyperparameters λ0. The user may specify either a scalar or a
vector. If the user does not provide this, the program chooses the grid automati-
cally.

lambda1 slab hyperparameter λ1 in the SSGL prior. Default is lambda1=1.

a shape hyperparameter for the Beta(a, b) prior on the mixing proportion in the
SSGL prior. Default is a=1.

b shape hyperparameter for the Beta(a, b) prior on the mixing proportion in the
SSGL prior. Default is b=dim(X)[2].

max_iter maximum number of iterations in the algorithm. Default is max_iter=100.

tol convergence threshold for algorithm. Default is tol=1e-6.

print_fold Boolean variable for whether or not to print the current fold in the algorithm.
Default is print_fold=TRUE.

Value

The function returns a list containing the following components:

lambda0 L× 1 vector of spike hyperparameters lambda0 used to fit the model. lambda0
is displayed in descending order.

cve L× 1 vector of mean cross-validation error across all K folds. The kth entry in
cve corresponds to the kth spike hyperparameter parameter in lambda0.

cvse L × 1 vector of standard errors for cross-validation error across all K folds.
The kth entry in cvse corresponds to the kth spike hyperparameter parameter in
lambda0.

lambda0_min The value in lambda0 that minimizes mean cross-validation error cve.

min_index The index of lambda0_min in lambda0.

8 gamma_grpreg

References

Bai, R. (2023). "Bayesian group regularization in generalized linear models with a continuous
spike-and-slab prior." arXiv pre-print arXiv:2007.07021.

Bai, R., Moran, G. E., Antonelli, J. L., Chen, Y., and Boland, M.R. (2022). "Spike-and-slab group
lassos for grouped regression and sparse generalized additive models." Journal of the American
Statistical Association, 117:184-197.

Examples

Generate data
set.seed(12345)
X = matrix(runif(50*6), nrow=50)
n = dim(X)[1]
groups = c(1,1,1,2,2,2)
beta_true = c(-2,1,1.5,0,0,0)

Generate responses from Gaussian distribution
Y = crossprod(t(X), beta_true) + rnorm(n)

K-fold cross-validation
NOTE: If you do not specify lambda0, the function will automatically choose a suitable grid.
ssgl_mods = cv_SSGL(Y, X, groups, family="gaussian", lambda0=seq(from=16,to=4,by=-4))

Plot cross-validation curve
plot(ssgl_mods$lambda0, ssgl_mods$cve, type="l", xlab="lambda0", ylab="CVE")
lambda which minimizes mean CVE
ssgl_mods$lambda0_min
ssgl_mods$min_index

Example with Poisson regression

Generate count responses
eta = crossprod(t(X), beta_true)
Y = rpois(n,exp(eta))

K-fold cross-validation
NOTE: If you do not specify lambda0, the program will automatically choose a suitable grid.
ssgl_poisson_mods = cv_SSGL(Y, X, groups, family="poisson", lambda0=seq(from=20,to=2,by=-4))

Plot cross-validation curve
plot(ssgl_poisson_mods$lambda0, ssgl_poisson_mods$cve, type="l", xlab="lambda0", ylab="CVE")
lambda which minimizes mean CVE
ssgl_poisson_mods$lambda0_min
ssgl_poisson_mods$min_index

gamma_grpreg Group-regularized Gamma Regression

gamma_grpreg 9

Description

This function implements group-regularized gamma regression with a known shape parameter ν
and the log link. In gamma regression, we assume that yi ∼ Gamma(µi, ν), where

f(yi|µi, ν) =
1

Γ(ν)
(
ν

µi
)ν exp(− ν

µi
yi)y

ν−1
i , y > 0.

Then E(yi) = µi, and we relate µi to a set of p covariates xi through the log link,

log(µi) = β0 + xT
i β, i = 1, ..., n

If the covariates in each xi are grouped according to known groups g = 1, ..., G, then this func-
tion can estimate some of the G groups of coefficients as all zero, depending on the amount of
regularization. Our implementation for regularized gamma regression is based on the least squares
approximation approach of Wang and Leng (2007), and hence, the function does not allow the total
number of covariates p to be greater than sample size.

In addition, this function has the option of returning the generalized information criterion (GIC) of
Fan and Tang (2013) for each regularization parameter in the grid lambda. The GIC can be used for
model selection and serves as a useful alternative to cross-validation.

Usage

gamma_grpreg(Y, X, groups, X_test, gamma_shape=1,
penalty=c("gLASSO","gSCAD","gMCP"),
group_weights, taper, n_lambda=100, lambda,
max_iter=10000, tol=1e-4, return_GIC=TRUE)

Arguments

Y n× 1 vector of strictly positive, continuous responses for training data.

X n × p design matrix for training data, where the jth column corresponds to the
jth overall feature.

groups p-dimensional vector of group labels. The jth entry in groups should contain ei-
ther the group number or the factor level name that the feature in the jth column
of X belongs to. groups must be either a vector of integers or factors.

X_test ntest × p design matrix for test data to calculate predictions. X_test must have
the same number of columns as X, but not necessarily the same number of rows.
If no test data is provided or if in-sample predictions are desired, then the func-
tion automatically sets X_test=X in order to calculate in-sample predictions.

gamma_shape known shape parameter ν in Gamma(µi, ν) distribution for the responses. De-
fault is gamma_shape=1.

penalty group regularization method to use on the groups of regression coefficients. The
options are "gLASSO", "gSCAD", "gMCP". To implement gamma regression with
the SSGL penalty, use the SSGL function.

group_weights group-specific, nonnegative weights for the penalty. Default is to use the square
roots of the group sizes.

10 gamma_grpreg

taper tapering term γ in group SCAD and group MCP controlling how rapidly the
penalty tapers off. Default is taper=4 for group SCAD and taper=3 for group
MCP. Ignored if "gLASSO" is specified as the penalty.

n_lambda number of regularization parameters L. Default is n_lambda=100.

lambda grid of L regularization parameters. The user may specify either a scalar or a
vector. If the user does not provide this, the program chooses the grid automati-
cally.

max_iter maximum number of iterations in the algorithm. Default is max_iter=10000.

tol convergence threshold for algorithm. Default is tol=1e-4.

return_GIC Boolean variable for whether or not to return the GIC. Default is return_GIC=TRUE.

Value

The function returns a list containing the following components:

lambda L× 1 vector of regularization parameters lambda used to fit the model. lambda
is displayed in descending order.

beta p × L matrix of estimated regression coefficients. The kth column in beta
corresponds to the kth regularization parameter in lambda.

beta0 L× 1 vector of estimated intercepts. The kth entry in beta0 corresponds to the
kth regularization parameter in lambda.

classifications

G×L matrix of classifications, where G is the number of groups. An entry of "1"
indicates that the group was classified as nonzero, and an entry of "0" indicates
that the group was classified as zero. The kth column of classifications
corresponds to the kth regularization parameter in lambda.

Y_pred ntest × L matrix of predicted mean response values µtest = E(Ytest) based
on the test data in X_test (or training data X if no argument was specified for
X_test). The kth column in Y_pred corresponds to the predictions for the kth
regularization parameter in lambda.

GIC L × 1 vector of GIC values. The kth entry of GIC corresponds to the kth entry
in our lambda grid. This is not returned if return_GIC=FALSE.

lambda_min The value in lambda that minimizes GIC. This is not returned if return_GIC=FALSE.

min_index The index of lambda_min in lambda. This is not returned if return_GIC=FALSE.

References

Breheny, P. and Huang, J. (2015). "Group descent algorithms for nonconvex penalized linear and
logistic regression models with grouped predictors." Statistics and Computing, 25:173-187.

Fan, Y. and Tang, C. Y. (2013). "Tuning parameter selection in high dimensional penalized likeli-
hood." Journal of the Royal Statistical Society: Series B (Statistical Methodology), 75:531-552.

Wang, H. and Leng, C. (2007). "Unified LASSO estimation by least squares approximation." Jour-
nal of the American Statistical Association, 102:1039-1048.

Yuan, M. and Lin, Y. (2006). "Model selection and estimation in regression with grouped variables."
Journal of the Royal Statistical Society: Series B (Statistical Methodology), 68:49-67.

nb_grpreg 11

Examples

Generate data
set.seed(1234)
X = matrix(runif(100*11), nrow=100)
n = dim(X)[1]
groups = c(1,1,1,2,2,2,3,3,4,5,5)
beta_true = c(-1,1,1,0,0,0,0,0,0,1.5,-1.5)

Generate responses from gamma regression with known shape parameter 1
eta = crossprod(t(X), beta_true)
shape = 1
Y = rgamma(n, rate=shape/exp(eta), shape=shape)

Generate test data
n_test = 50
X_test = matrix(runif(n_test*11), nrow=n_test)

Fit gamma regression models with the group SCAD penalty
gamma_mod = gamma_grpreg(Y, X, groups, X_test, penalty="gSCAD")

Tuning parameters used to fit models
gamma_mod$lambda

Predicted n_test-dimensional vectors mu=E(Y_test) based on test data, X_test.
The kth column of 'Y_pred' corresponds to the kth entry in 'lambda.'
gamma_mod$Y_pred

Classifications of the 5 groups. The kth column of 'classifications'
corresponds to the kth entry in 'lambda.'
gamma_mod$classifications

Plot lambda vs. GIC
plot(gamma_mod$lambda, gamma_mod$GIC, type='l')

Model selection with the lambda that minimizes GIC
gamma_mod$lambda_min
gamma_mod$min_index
gamma_mod$classifications[, gamma_mod$min_index]
gamma_mod$beta[, gamma_mod$min_index]

nb_grpreg Group-regularized Negative Binomial Regression

Description

This function implements group-regularized negative binomial regression with a known size pa-
rameter α and the log link. In negative binomial regression, we assume that yi ∼ NB(α, µi),
where

12 nb_grpreg

f(yi|α, µi) =
Γ(yi + α)

yi!Γ(α)
(

µi

µi + α
)yi(

α

µi + α
)α, yi = 0, 1, 2, ...

Then E(yi) = µi, and we relate µi to a set of p covariates xi through the log link,

log(µi) = β0 + xT
i β, i = 1, ..., n

If the covariates in each xi are grouped according to known groups g = 1, ..., G, then this function
can estimate some of the G groups of coefficients as all zero, depending on the amount of regu-
larization. Our implementation for regularized negative binomial regression is based on the least
squares approximation approach of Wang and Leng (2007), and hence, the function does not allow
the total number of covariates p to be greater than sample size.

In addition, this function has the option of returning the generalized information criterion (GIC) of
Fan and Tang (2013) for each regularization parameter in the grid lambda. The GIC can be used for
model selection and serves as a useful alternative to cross-validation.

Usage

nb_grpreg(Y, X, groups, X_test, nb_size=1, penalty=c("gLASSO","gSCAD","gMCP"),
group_weights, taper, n_lambda=100, lambda,
max_iter=10000, tol=1e-4, return_GIC=TRUE)

Arguments

Y n× 1 vector of strictly nonnegative integer responses for training data.

X n × p design matrix for training data, where the jth column corresponds to the
jth overall feature.

groups p-dimensional vector of group labels. The jth entry in groups should contain ei-
ther the group number or the factor level name that the feature in the jth column
of X belongs to. groups must be either a vector of integers or factors.

X_test ntest × p design matrix for test data to calculate predictions. X_test must have
the same number of columns as X, but not necessarily the same number of rows.
If no test data is provided or if in-sample predictions are desired, then the func-
tion automatically sets X_test=X in order to calculate in-sample predictions.

nb_size known size parameter α in NB(α, µi) distribution for the responses. Default is
nb_size=1.

penalty group regularization method to use on the groups of regression coefficients. The
options are "gLASSO", "gSCAD", "gMCP". To implement gamma regression with
the SSGL penalty, use the SSGL function.

group_weights group-specific, nonnegative weights for the penalty. Default is to use the square
roots of the group sizes.

taper tapering term γ in group SCAD and group MCP controlling how rapidly the
penalty tapers off. Default is taper=4 for group SCAD and taper=3 for group
MCP. Ignored if "gLASSO" is specified as the penalty.

n_lambda number of regularization parameters L. Default is n_lambda=100.

nb_grpreg 13

lambda grid of L regularization parameters. The user may specify either a scalar or a
vector. If the user does not provide this, the program chooses the grid automati-
cally.

max_iter maximum number of iterations in the algorithm. Default is max_iter=10000.

tol convergence threshold for algorithm. Default is tol=1e-4.

return_GIC Boolean variable for whether or not to return the GIC. Default is return_GIC=TRUE.

Value

The function returns a list containing the following components:

lambda L× 1 vector of regularization parameters lambda used to fit the model. lambda
is displayed in descending order.

beta p × L matrix of estimated regression coefficients. The kth column in beta
corresponds to the kth regularization parameter in lambda.

beta0 L× 1 vector of estimated intercepts. The kth entry in beta0 corresponds to the
kth regularization parameter in lambda.

classifications

G×L matrix of classifications, where G is the number of groups. An entry of "1"
indicates that the group was classified as nonzero, and an entry of "0" indicates
that the group was classified as zero. The kth column of classifications
corresponds to the kth regularization parameter in lambda.

Y_pred ntest × L matrix of predicted mean response values µtest = E(Ytest) based
on the test data in X_test (or training data X if no argument was specified for
X_test). The kth column in Y_pred corresponds to the predictions for the kth
regularization parameter in lambda.

GIC L × 1 vector of GIC values. The kth entry of GIC corresponds to the kth entry
in our lambda grid. This is not returned if return_GIC=FALSE.

lambda_min The value in lambda that minimizes GIC. This is not returned if return_GIC=FALSE.

min_index The index of lambda_min in lambda. This is not returned if return_GIC=FALSE.

References

Breheny, P. and Huang, J. (2015). "Group descent algorithms for nonconvex penalized linear and
logistic regression models with grouped predictors." Statistics and Computing, 25:173-187.

Fan, Y. and Tang, C. Y. (2013). "Tuning parameter selection in high dimensional penalized likeli-
hood." Journal of the Royal Statistical Society: Series B (Statistical Methodology), 75:531-552.

Wang, H. and Leng, C. (2007). "Unified LASSO estimation by least squares approximation." Jour-
nal of the American Statistical Association, 102:1039-1048.

Yuan, M. and Lin, Y. (2006). "Model selection and estimation in regression with grouped variables."
Journal of the Royal Statistical Society: Series B (Statistical Methodology), 68:49-67.

14 SSGL

Examples

Generate data
set.seed(1234)
X = matrix(runif(100*15), nrow=100)
n = dim(X)[1]
groups = c("A","A","A","A","B","B","B","B","C","C","D","D","E","E","E")
groups = as.factor(groups)
beta_true = c(-1.5,1.5,-1.5,1.5,0,0,0,0,0,0,2,-2,0,0,0)

Generate count responses from negative binomial regression
eta = crossprod(t(X), beta_true)
Y = rnbinom(n,size=1, mu=exp(eta))

Generate test data
n_test = 50
X_test = matrix(runif(n_test*15), nrow=n_test)

Fit negative binomial regression models with the group MCP penalty
nb_mod = nb_grpreg(Y, X, groups, X_test, penalty="gMCP")

Tuning parameters used to fit models
nb_mod$lambda

Predicted n_test-dimensional vectors mu=E(Y_test) based on test data, X_test.
The kth column of 'Y_pred' corresponds to the kth entry in 'lambda.'
nb_mod$Y_pred

Classifications of the 8 groups. The kth column of 'classifications'
corresponds to the kth entry in lambda.
nb_mod$classifications

Plot lambda vs. GIC
plot(nb_mod$lambda, nb_mod$GIC, type='l')

Model selection with the lambda that minimizes GIC
nb_mod$lambda_min
nb_mod$min_index
nb_mod$classifications[, nb_mod$min_index]
nb_mod$beta[, nb_mod$min_index]

SSGL Spike-and-Slab Group Lasso for Group-Regularized Generalized Lin-
ear Models (GLMs)

Description

This is a function to implement group-regularized GLMs with the spike-and-slab group lasso (SSGL)
penalty of Bai et al. (2022) and Bai (2023). The identity link function is used for Gaussian regres-
sion, the logit link is used for binomial regression, and the log link is used for Poisson, negative

SSGL 15

binomial, and gamma regression. If the covariates in each xi are grouped according to known
groups g = 1, ..., G, then this function can estimate some of the G groups of coefficients as all zero,
depending on the amount of regularization.

In addition, this function has the option of returning the generalized information criterion (GIC) of
Fan and Tang (2013) for each regularization parameter in the grid lambda0. The GIC can be used
for model selection and serves as a useful alternative to cross-validation. The formula for the GIC
and a given λ0 is

DIC(λ0) =
1

n
Devianceλ0

+ an × ν),

where Devianceλ0
is the deviance computed with the estimate of beta based on spike hyperpa-

rameter λ0, ν0 is the number of nonzero elements in the estimated beta, and an is a sequence
that diverges at a suitable rate relative to n. As recommended by Fan and Tang (2013), we set
an = {log(log(n))} log(p).

Usage

SSGL(Y, X, groups,
family=c("gaussian","binomial","poisson","negativebinomial","gamma"),
X_test, nb_size=1, gamma_shape=1, group_weights, n_lambda0=25,
lambda0, lambda1=1, a=1, b=dim(X)[2],
max_iter=100, tol = 1e-6, return_GIC=TRUE, print_lambda0=TRUE)

Arguments

Y n× 1 vector of responses for training data.

X n× p design matrix for training data, where the jth column of X corresponds to
the jth overall covariate.

groups p-dimensional vector of group labels. The jth entry in groups should contain ei-
ther the group number or the factor level name that the feature in the jth column
of X belongs to. groups must be either a vector of integers or factors.

family exponential dispersion family of the response variables. Allows for "gaussian",
"binomial", "poisson", "negativebinomial", and "gamma". Note that for
"negativebinomial", the size parameter must be specified in advance, while
for "gamma", the shape parameter must be specified in advance.

X_test ntest × p design matrix for test data to calculate predictions. X_test must have
the same number of columns as X, but not necessarily the same number of rows.
If no test data is provided or if in-sample predictions are desired, then the func-
tion automatically sets X_test=X in order to calculate in-sample predictions.

nb_size known size parameter α in NB(α, µi) distribution for the responses if the user
specifies family="negativebinomial". Default is nb_size=1. Ignored if
family is not "gamma".

gamma_shape known shape parameter ν in Gamma(µi, ν) distribution for the responses if the
user specifies family="gamma". Default is gamma_shape=1.

group_weights group-specific, nonnegative weights for the penalty. Default is to use the square
roots of the group sizes.

16 SSGL

n_lambda0 number of spike hyperparameters L. Default is n_lambda0=25.

lambda0 grid of L spike hyperparameters λ0. The user may specify either a scalar or a
vector. If the user does not provide this, the program chooses the grid automati-
cally.

lambda1 slab hyperparameter λ1 in the SSGL prior. Default is lambda1=1.

a shape hyperparameter for the Beta(a, b) prior on the mixing proportion in the
SSGL prior. Default is a=1.

b shape hyperparameter for the Beta(a, b) prior on the mixing proportion in the
SSGL prior. Default is b=dim(X)[2].

max_iter maximum number of iterations in the algorithm. Default is max_iter=100.

tol convergence threshold for algorithm. Default is tol=1e-6.

return_GIC Boolean variable for whether or not to return the GIC. Default is return_GIC=TRUE.

print_lambda0 Boolean variable for whether or not to print the current value in lambda0. De-
fault is print_lambda0=TRUE.

Value

The function returns a list containing the following components:

lambda0 L× 1 vector of spike hyperpameters lambda0 used to fit the model. lambda0 is
displayed in descending order.

beta p × L matrix of estimated regression coefficients. The kth column in beta
corresponds to the kth spike hyperparameter in lambda0.

beta0 L× 1 vector of estimated intercepts. The kth entry in beta0 corresponds to the
kth spike hyperparameter in lambda0.

classifications

G×L matrix of classifications, where G is the number of groups. An entry of "1"
indicates that the group was classified as nonzero, and an entry of "0" indicates
that the group was classified as zero. The kth column of classifications
corresponds to the kth spike hyperparameter in lambda0.

Y_pred ntest × L matrix of predicted mean response values µtest = E(Ytest) based
on the test data in X_test (or training data X if no argument was specified for
X_test). The kth column in Y_pred corresponds to the predictions for the kth
spike hyperparameter in lambda0.

GIC L × 1 vector of GIC values. The kth entry of GIC corresponds to the kth entry
in our lambda0 grid. This is not returned if return_GIC=FALSE.

lambda0_min The value in lambda0 that minimizes GIC. This is not returned if return_GIC=FALSE.

min_index The index of lambda0_min in lambda0. This is not returned if return_GIC=FALSE.

References

Bai, R. (2023). "Bayesian group regularization in generalized linear models with a continuous
spike-and-slab prior." arXiv pre-print arXiv:2007.07021.

SSGL 17

Bai, R., Moran, G. E., Antonelli, J. L., Chen, Y., and Boland, M.R. (2022). "Spike-and-slab group
lassos for grouped regression and sparse generalized additive models." Journal of the American
Statistical Association, 117:184-197.

Fan, Y. and Tang, C. Y. (2013). "Tuning parameter selection in high dimensional penalized likeli-
hood." Journal of the Royal Statistical Society: Series B (Statistical Methodology), 75:531-552.

Examples

Generate data
set.seed(12345)
X = matrix(runif(100*10), nrow=100)
n = dim(X)[1]
groups = c("A","A","A","B","B","B","C","C","D","D")
groups = as.factor(groups)
beta_true = c(-2.5,1.5,1.5,0,0,0,2,-2,0,0)

Generate responses from Gaussian distribution
Y = crossprod(t(X), beta_true) + rnorm(n)

Generate test data
n_test = 50
X_test = matrix(runif(n_test*10), nrow=n_test)

Fit SSGL model with 10 spike hyperparameters
NOTE: If you do not specify lambda0, the program will automatically choose a suitable grid.
SSGL_mod = SSGL(Y, X, groups, family="gaussian", X_test, lambda0=seq(from=50,to=5,by=-5))

Regression coefficient estimates
SSGL_mod$beta

Predicted n_test-dimensional vectors mu=E(Y.test) based on test data, X_test.
The kth column of 'Y_pred' corresponds to the kth entry in 'lambda.'
SSGL_mod$Y_pred

Classifications of the 8 groups. The kth column of 'classifications'
corresponds to the kth entry in 'lambda.'
SSGL_mod$classifications

Plot lambda vs. GIC
plot(SSGL_mod$lambda0, SSGL_mod$GIC, type='l')

Model selection with the lambda that minimizes GIC
SSGL_mod$lambda0_min
SSGL_mod$min_index
SSGL_mod$classifications[, SSGL_mod$min_index]
SSGL_mod$beta[, SSGL_mod$min_index]

Example with binary logistic regression

set.seed(12345)

18 SSGL

X = matrix(runif(100*8), nrow=100)
n = dim(X)[1]
groups = c("A","A","A","B","B","B","C","C")
groups = as.factor(groups)
beta_true = c(-2.5,1.5,1.5,0,0,0,2,-2)

Generate binary responses
eta = crossprod(t(X), beta_true)
Y = rbinom(n, size=1, prob=1/(1+exp(-eta)))

Generate test data
n_test = 50
X_test = matrix(runif(n_test*8), nrow=n_test)

Fit SSGL logistic regression model with 10 spike hyperparameters
NOTE: If you do not specify lambda0, the program will automatically choose a suitable grid.
SSGL_logistic_mod = SSGL(Y, X, groups, family="binomial", X_test, lambda0=seq(from=10,to=1,by=-1.5))

Regression coefficient estimates
SSGL_logistic_mod$beta

Predicted n_test-dimensional vectors mu=E(Y_test) based on test data, X_test.
The kth column of 'Y_pred' corresponds to the kth entry in 'lambda.'
SSGL_logistic_mod$Y_pred

Classifications of the 8 groups. The kth column of 'classifications'
corresponds to the kth entry in 'lambda.'
SSGL_logistic_mod$classifications

Plot lambda vs. GIC
plot(SSGL_logistic_mod$lambda0, SSGL_logistic_mod$GIC, type='l')

Model selection with the lambda that minimizes GIC
SSGL_logistic_mod$lambda0_min
SSGL_logistic_mod$min_index
SSGL_logistic_mod$classifications[, SSGL_logistic_mod$min_index]
SSGL_logistic_mod$beta[, SSGL_logistic_mod$min_index]

Index

cv_gamma_grpreg, 2
cv_nb_grpreg, 4
cv_SSGL, 6

gamma_grpreg, 8

nb_grpreg, 11

SSGL, 14

19

	cv_gamma_grpreg
	cv_nb_grpreg
	cv_SSGL
	gamma_grpreg
	nb_grpreg
	SSGL
	Index

