Package ‘LAWBL’

April 1, 2021

Type Package

Title Latent (Variable) Analysis with Bayesian Learning

Version 1.4.0

Date 2021-04-01

Author Jinsong Chen [aut, cre, cph]

Maintainer Jinsong Chen <jinsong.chen@live.com>

Description A variety of models to analyze latent variables based on Bayesian learning: the partially CFA (Chen, Guo, Zhang, & Pan, 2020) <DOI: 10.1037/met0000293>; generalized PCFA; partially confirmatory IRM (Chen, 2020) <DOI: 10.1007/s11336-020-09724-3>; Bayesian regularized EFA <DOI: 10.1080/10705511.2020.1854763>; Fully and partially EFA.

License GPL-3

Encoding UTF-8

LazyData true

Depends R (>= 3.6.0)

Imports stats, MASS, coda

RoxygenNote 7.1.1

BugReports https://github.com/Jinsong-Chen/LAWBL/issues

Suggests knitr, rmarkdown, testthat

VignetteBuilder knitr

NeedsCompilation no

Repository CRAN

Date/Publication 2021-04-01 21:30:15 UTC
Description

This package is to provide a variety of models to analyze latent variables based on Bayesian learning.

Details

LAWBL represents a partially confirmatory / exploratory approach to model latent variables based on Bayesian learning. Built on the power of statistical learning, it can address psychometric challenges such as parameter specification, local dependence, and factor extraction. Built on the scalability and flexibility of Bayesian inference and resampling techniques, it can accommodate modeling frameworks such as factor analysis, item response theory, cognitive diagnosis modeling and causal or explanatory modeling. The package can also handle different response formats or a mix of them, with or without missingness. The variety of models provide a partial approach covering a wide range of the exploratory-confirmatory continuum under the context of latent variable modeling.

Towards the confirmatory end, this package includes the Partially Confirmatory Factor Analysis (PCFA) model for continuous data (Chen, Guo, Zhang, & Pan, 2020), the generalized PCFA (GPCFA) model covering continuous, categorical, and mixed-type data, and the partially confirmatory item response model (PCIRM) for continuous and dichotomous data with intercept terms (Chen, 2020). For PCFA, GPCFA, and PCIRM, there are two major model variants with different constraints for identification. One assumes local independence (LI) with a more exploratory tendency, which can be also called the E-step. The other allows local dependence (LD) with a more confirmatory tendency, which can be also called the C-step.

Towards the exploratory end, the Bayesian regularized EFA (BREFA) with factor extraction and parameter estimation in one step (Chen 2021) is offered. It’s further improved as the Fully and partially EFA with better performance and partial knowledge.
Parameters are obtained by sampling from the posterior distributions with the Markov chain Monte Carlo (MCMC) techniques. Different Bayesian learning methods are used to regularize the loading pattern, local dependence, and/or factor identification.

Note

This package is under development. You are very welcome to send me any comments or suggestions for improvements, and to share with me any problems you may encounter with the use of this package.

Author(s)

Jinsong Chen, <jinsong.chen@live.com>

References

nlsy27

National Longitudinal Survey of Youth 1997

Description

A data set consisted of 3,458 individual responses to 27 mixed-type items, with a 1.12 percentage of missing data.

Usage

`nlsy27`

Format

A list with components:

- `dat` The response data
- `Q` Initial design matrix with three factors and two to three specified loadings per factor
- `cati` Indices of categorical (polytomous) items
Description

PCFA is a partially confirmatory approach covering a wide range of the exploratory-confirmatory continuum in factor analytic models (Chen, Guo, Zhang, & Pan, 2020). The PCFA is only for continuous data, while the generalized PCFA (GPCFA) covers both continuous and categorical data. There are two major model variants with different constraints for identification. One assumes local independence (LI) with a more exploratory tendency, which can be also called the E-step. The other allows local dependence (LD) with a more confirmatory tendency, which can be also called the C-step. Parameters are obtained by sampling from the posterior distributions with the Markov chain Monte Carlo (MCMC) techniques. Different Bayesian Lasso methods are used to regularize the loading pattern and LD. The estimation results can be summarized with `summary.lawbl` and the factorial eigenvalue can be plotted with `plot_lawbl`.

Usage

```r
pcfa(
  dat, 
  Q, 
  LD = TRUE, 
  cati = NULL, 
  cand_thd = 0.2, 
  PPMC = FALSE, 
  burn = 5000, 
  iter = 5000, 
  update = 1000, 
  missing = NA, 
  rseed = 12345, 
  digits = 4, 
  alas = FALSE, 
  verbose = FALSE
)
```

Arguments

- `dat`
 A \(N \times J\) data matrix or data.frame consisting of the responses of \(N\) individuals to \(J\) items.

- `Q`
 A \(J \times K\) design matrix for the loading pattern with \(K\) factors and \(J\) items. Elements are 1, -1, and 0 for specified, unspecified, and zero-fixed loadings, respectively. For models with LI or the E-step, one can specify a few (e.g., 2) loadings per factor. For models with LD or the C-step, the sufficient condition of one specified loading per item is suggested, although there can be a few items without any specified loading. See Examples.

- `LD`
 logical; TRUE for allowing LD (model with LD or C-step).
The set of categorical (polytomous) items in sequence number (i.e., 1 to \(J\)); NULL for no and -1 for all items (default is NULL).

Candidate parameter for sampling the thresholds with the MH algorithm.

Logical; TRUE for conducting posterior predictive model checking.

Number of burn-in iterations before posterior sampling.

Number of formal iterations for posterior sampling (> 0).

Number of iterations to update the sampling information.

Value for missing data (default is NA).

An integer for the random seed.

Number of significant digits to print when printing numeric values.

Logical; for adaptive Lasso or not. The default is FALSE.

Logical; to display the sampling information every update or not.

- Feigen: Eigenvalue for each factor.
- NLA_le3: Number of Loading estimates \(\geq .3\) for each factor.
- Shrink: Shrinkage (or ave. shrinkage for each factor for adaptive Lasso).
- sign_sw: Number of sign switch.
- Adj PSR: Adjusted PSR for each factor.
- Ave. Thd: Ave. thresholds for polytomous items.
- Acc Rate: Acceptance rate of threshold (MH algorithm).
- LD>.2 >.1 LD>.2 >.1: # of LD terms larger than .2 and .1, and LD’s shrinkage parameter.

Value

`pcfa` returns an object of class `lawbl` without item intercepts. It contains a lot of information about the posteriors that can be summarized using `summary.lawbl`.

References

Examples

```r
# Example 1: Estimation with continuous data & LD #

dat <- sim18cfal$dat
J <- ncol(dat)
K <- 3
Q<-matrix(-1,J,K);
```

m0 <- pcfa(dat = dat, Q = Q, LD = TRUE, burn = 2000, iter = 2000)
summary(m0) # summarize basic information
summary(m0, what = 'qlambda') # summarize significant loadings in pattern/Q-matrix format
summary(m0, what = 'offpsx') # summarize significant LD terms

Example 2: Estimation with categorical data & LI

dat <- sim18ccfa40$dat
J <- ncol(dat)
K <- 3
Q<-matrix(-1,J,K);

m1 <- pcfa(dat = dat, Q = Q, LD = FALSE, cati = -1, burn = 2000, iter = 2000)
summary(m1) # summarize basic information
summary(m1, what = 'qlambda') # summarize significant loadings in pattern/Q-matrix format
summary(m1, what = 'offpsx') # summarize significant LD terms
summary(m1, what = 'thd') # thresholds for categorical items

pcirm

Partially Confirmatory Item Response Model

Description

pcirm is a partially confirmatory approach to item response models (Chen, 2020), which estimates the intercept for continuous and dichotomous data. Similar to PCFA and GPCFA, there are two major model variants with different constraints for identification. One assumes local independence (LI) with a more exploratory tendency, which can be also called the E-step. The other allows local dependence (LD) with a more confirmatory tendency, which can be also called the C-step. Parameters are obtained by sampling from the posterior distributions with the Markov chain Monte Carlo (MCMC) techniques. Different Bayesian Lasso methods are used to regularize the loading pattern and LD. The estimation results can be summarized with *summary.lawbl* and the factorial eigenvalue can be plotted with *plot.lawbl*.

Usage

```r
pcirm(
  dat,
  Q,
  LD = TRUE,
  cati = NULL,
  PPMC = FALSE,
  burn = 5000,
  iter = 5000,
  update = 1000,
  missing = NA,
  rseed = 12345,
)```

digits = 4,
alas = FALSE,
verbose = FALSE
)

Arguments

dat  A \(N \times J\) data matrix or data.frame consisting of the responses of \(N\) individuals to \(J\) items. Only continuous and dichotomous data are supported.

Q  A \(J \times K\) design matrix for the loading pattern with \(K\) factors and \(J\) items. Elements are 1, -1, and 0 for specified, unspecified, and zero-fixed loadings, respectively. For models with LI or the E-step, one can specify a few (e.g., 2) loadings per factor. For models with LD or the C-step, the sufficient condition of one specified loading per item is suggested, although there can be a few items without any specified loading. See Examples.

LD  logical; TRUE for allowing LD (model with LD or C-step).

cati  The set of dichotomous items in sequence number (i.e., 1 to \(J\)); NULL for no and -1 for all items (default is NULL).

PPMC  logical; TRUE for conducting posterior predictive model checking.

burn  Number of burn-in iterations before posterior sampling.

iter  Number of formal iterations for posterior sampling (> 0).

update  Number of iterations to update the sampling information.

missing  Value for missing data (default is NA).

rseed  An integer for the random seed.

digits  Number of significant digits to print when printing numeric values.

alas  logical; for adaptive Lasso or not. The default is FALSE.

verbose  logical; to display the sampling information every \(update\) or not.

• Feigen: Eigenvalue for each factor.
• NLA_1e3: Number of Loading estimates >= .3 for each factor.
• Shrink: Shrinkage (or ave. shrinkage for each factor for adaptive Lasso).
• sign_sw: Number of sign switch.
• Adj PSR: Adjusted PSR for each factor.
• Ave. Int.: Ave. item intercept.
• LD>.2 >.1 LD>.2 >.1: # of LD terms larger than .2 and .1, and LD’s shrinkage parameter.

Value

\texttt{pcirm} returns an object of class \texttt{lawbl} with item intercepts. It contains a lot of information about the posteriors that can be summarized using \texttt{summary.lawbl}.

References

Examples

```
Example 1: Estimation with LD

dat <- sim24ccfa21$dat
J <- ncol(dat)
K <- 3
Q<-matrix(-1,J,K);
m0 <- pcirm(dat = dat, Q = Q, LD = TRUE, cati = -1, burn = 2000, iter = 2000)
summary(m0) # summarize basic information
summary(m0, what = 'qlambda') #summarize significant loadings in pattern/Q-matrix format
summary(m0, what = 'offpsx') #summarize significant LD terms
```

```
Example 2: Estimation with LD

Q<-cbind(Q,-1);
Q[15:16,4]<-1
m1 <- pcirm(dat = dat, Q = Q, LD = FALSE, cati = -1, burn = 2000, iter = 2000)
summary(m1) # summarize basic information
summary(m1, what = 'qlambda') #summarize significant loadings in pattern/Q-matrix format
summary(m1, what = 'offpsx') #summarize significant LD terms
```

pefa

**Partially Exploratory Factor Analysis**

Description

PEFA is a partially exploratory approach to factor analysis, which can incorporate partial knowledge together with unknown number of factors, using bi-level Bayesian regularization. When partial knowledge is not needed, it reduces to the fully exploratory factor analysis (FEFA; Chen, 2021). A large number of factors can be imposed for selection where true factors will be identified against spurious factors. The loading vector is reparameterized to tackle model sparsity at the factor and loading levels with the multivariate spike and slab priors. Parameters are obtained by sampling from the posterior distributions with the Markov chain Monte Carlo (MCMC) techniques. The estimation results can be summarized with `summary.lawbl` and the trace or density of the posterior can be plotted with `plot.lawbl`.

Usage

```
pefa(
 dat,
```
pefa

Q = NULL,
K = 8,
mjf = 3,
PPMC = FALSE,
burn = 5000,
iter = 5000,
update = 1000,
rseed = 12345,
digits = 4,
verbose = FALSE
)

Arguments

dat A \( N \times J \) data matrix or data.frame consisting of the responses of \( N \) individuals
to \( J \) items.
Q A \( J \times K \) design matrix for the loading pattern with \( K \) factors and \( J \) items for
PEFA. Elements are 1, -1, and 0 for specified, unspecified, and zero-fixed load-
ings, respectively. It’s not needed for FEFA, which is the default. See Examples.
K Maximum number of factors for selection under FEFA. Not used for PEFA.
mjf Minimum number of items per factor.
PPMC logical; TRUE for conducting posterior predictive model checking.
burn Number of burn-in iterations before posterior sampling.
iter Number of formal iterations for posterior sampling (> 0).
update Number of iterations to update the sampling information.
rseed An integer for the random seed.
digits Number of significant digits to print when printing numeric values.
verbose logical; to display the sampling information every update or not.

Value

pcfa returns an object of class lawbl without item intercepts. It contains a lot of information about
the posteriors that can be summarized using summary.lawbl.

References

Examples

```
Example 1: Fully EFA

dat <- sim18cfa0$dat
m0 <- pefa(dat = dat, K=5, burn = 2000, iter = 2000, verbose = TRUE)
summary(m0) # summarize basic information
summary(m0, what = 'qlambda') # summarize significant loadings in pattern/Q-matrix format
summary(m0, what = 'phi') # summarize factorial correlations
summary(m0, what = 'eigen') # summarize factorial eigenvalue

Example 2: PEFA with two factors partially specified

J <- ncol(dat)
K <- 5
Q<-matrix(-1,J,K);
Q[1:2,1]<-Q[7:8,2]<-1
Q
m1 <- pefa(dat = dat, Q = Q,burn = 2000, iter = 2000, verbose = TRUE)
summary(m1)
summary(m1, what = 'qlambda')
summary(m1, what = 'phi')
summary(m1,what='eigen')
```

---

**plot_lawbl**

*Posterior plots for lawbl object*

**Description**

Provide posterior plots based on the factorial eigenvalues of a lawbl object. For PEFA or FEFA, only true factors will be plotted.

**Usage**

```
plot_lawbl(object, what = "trace")
```

**Arguments**

- **object** A lawbl object
- **what** A list of options for what to plot.
  - *trace*: The trace of each factor’s eigenvalue.
• density: The trace of each factor’s eigenvalue.
• APSR: The adjusted (single-chain) Gelman-Rubin diagnostics of each factor’s eigenvalue.

Examples

```r
dat <- sim18cfa0$dat
J <- ncol(dat)
K <- 3
Q<-matrix(-1,J,K);

m0 <- pcfa(dat = dat, Q = Q, LD = FALSE,burn = 1000, iter = 1000)
plot_lawbl(m0) # trace
plot_lawbl(m0, what='density')
plot_lawbl(m0, what='APSR')
```

Description

Categorical CFA data simulated based on 18 items, 3 factors, and 4 categories with local independence and 10 percent missingness at random; factorial correlation $\Phi = .3$.

Usage

```r
sim18ccfa40
```

Format

A list with components:

- **dat**: A dataset with simulated responses of 1000 individuals to 18 items
- **qlam**: Loading pattern and values used to simulated the data
sim18ccfa41  
*Simulated CCFA data with LD and missingness*

**Description**

Categorical CFA data simulated based on 18 items, 3 factors, and 4 categories with local dependence and 10 percent missingness at random; factorial correlation $\Phi = .3$.

**Usage**

`sim18ccfa41`

**Format**

A list with components:

- `dat`  A dataset with simulated responses of 1000 individuals to 18 items
- `qlam` Loading pattern and values used to simulated the data
- `LD`  Local dependence between items (LD effect = .3)

---

sim18cfa0  
*Simulated CFA data with LI*

**Description**

CFA data simulated based on 18 items, 3 factors and local independence; factorial correlation $\Phi = .3$.

**Usage**

`sim18cfa0`

**Format**

A list with components:

- `dat`  A dataset with simulated responses of 1000 individuals to 18 items
- `qlam` Loading pattern and values used to simulated the data
Simulated CFA data with LD

**Description**

CFA data simulated based on 18 items, 3 factors and local dependence; factorial correlation $\Phi = .3$.

**Usage**

`sim18cfa1`

**Format**

A list with components:

- `dat`: A dataset with simulated responses of 1000 individuals to 18 items
- `qlam`: Loading pattern and values used to simulated the data
- `LD`: Local dependence between items (LD effect = .3)

Simulated MCFA data with LD and Missingness

**Description**

CFA data mixed with continuous and categorical responses simulated based on 3 factors, 6 4-category items, 12 continuous items, local dependence, and 10 percent missigness at random; factorial correlation $\Phi = .3$.

**Usage**

`sim18mcfa41`

**Format**

A list with components:

- `dat`: A dataset with simulated responses of 1000 individuals to 18 items
- `qlam`: Loading pattern and values used to simulated the data
- `LD`: Local dependence between items (LD effect = .3)
**sim24ccfa21**  
*Simulated CCFA data (dichotomous) with LD and a minor factor/trait*

**Description**

Categorical CFA data simulated based on 24 items, 4 factors, 2 categories and local dependence; factorial correlation $\Phi = .3$. The last factor/trait is minor (measured by cross-loadings only).

**Usage**

```r
sim24ccfa21
```

**Format**

A list with components:

- `dat` A dataset with simulated responses of 1000 individuals to 24 items
- `qlam` Loading pattern and values used to simulated the data
- `LD` Local dependence between items (LD effect = .3)

---

**sim_lvm**  
*Simulating data with Latent Variable Modeling*

**Description**

`sim_lvm` can simulate data based on factor analysis or item response models with different response formats (continuous or categorical), loading patterns and residual covariance (local dependence) structures.

**Usage**

```r
sim_lvm(
 N = 1000,
 K = 3,
 ipf = 8,
 cpf = 2,
 lam = 0.7,
 lac = 0.3,
 phi = 0.5,
 ph1 = -1,
 ecr = 0,
 ome_out = FALSE,
 cati = NULL,
 noc = c(4),
 misp = 0,
)```
sim_lvm

rseed = 333,
necw = K,
necb = K,
add_ind = c(),
add_la = 0.5,
add_phi = 0,
zero_it = 0,
digits = 4
)

Arguments

N Sample size.
K Number of factors.
ipf Items per factor.
cpf Cross-loadings per factor.
lam Number of formal iterations for posterior sampling.
lac Number of iterations to update the sampling information.
phi Homogeneous correlations between any two factors.
phi1 Correlation between factor 1 and 2 (if it’s different from phi).
ear Residual correlation (local dependence).
ome_out Output factor score or not.
cati The set of categorical (polytomous) items in sequence number (i.e., 1 to \(J \));
 NULL for no and -1 for all (default is NULL).
noc Number of categories for categorical items
misp Proportion of missingness.
rseed An integer for the random seed.
necw Number of within-factor local dependence.
necb Number of between-factor local dependence.
add_ind (Additional) minor factor with cross-loadings.
add_la Value of cross-loadings on (Additional) minor factor.
add_phi Correlations between (Additional) minor factor and other factors.
zero_it Surplus items with zero loading.
digits Number of significant digits to print when printing numeric values.

Value

An object of class list containing the data, loading, and factorial correlation matrix.
Examples

for continuous data with cross-loadings and local dependence effect .3
out <- sim_lvm(N=1000,K=3,ipf=6,lam = .7, lac=.3,ecr=.3)
summary(out$dat)
out$MLA
out$ofd_ind

for categorical data with cross-loadings .4 and 10% missingness
out <- sim_lvm(N=1000,K=3,ipf=6,lam = .7, lac=.4,cati=-1,noc=4,misp=.1)
summary(out$dat)
out$MLA
out$ofd_ind

summary.lawbl

Summary method for lawbl objects

Description
Provide summaries of posterior information for a lawbl object.

Usage

S3 method for class 'lawbl'
summary(
 object,
 what = "basic",
 med = FALSE,
 SL = 0.05,
 detail = FALSE,
 digits = 4,
 ...
)

Arguments

object A lawbl object
what A list of options for what to summarize.

• basic: Basic information about the model and posteriors.
• lambda: Loading estimates.
• qlambda: Loading estimates in pattern/Q-matrix format.
• eigen: Factorial eigen value.
• dpsx: Diagonal elements in the residual covariance matrix PSX.
• offpsx: Off-diagonal elements in PSX; local dependence terms.
• phi: Factorial correlations.
summary.lawbl

- thd: Threshold estimates.
- int: Intercept estimates (for pcirm only).
- shrink: (Ave) shrinkage for each factor's loadings and LD (if LD in pcfa = T).
- factor: Are the factors true of not (for EFA).
- all: All above information.

med logical; if the posterior median (TRUE) or mean (FALSE) is used as the estimate.
SL Significance level for interval estimate. The default is .05.
detail logical; if only significant (FALSE) or all (TRUE) estimates are presented.
digits Number of significant digits to print when printing numeric values.

Value
A list or matrix containing the summarized information based on the option what.

Examples

dat <- sim18cfa0$dat
J <- ncol(dat)
K <- 3
Q<-matrix(-1,J,K);

m0 <- pcfa(dat = dat, Q = Q, LD = FALSE,burn = 1000, iter = 1000)
summary(m0) # summarize basic information
summary(m0, what = 'lambda') #summarize significant loadings
summary(m0, what = 'qlambda') #summarize significant loadings in pattern/Q-matrix format
summary(m0, what = 'offpsx') #summarize significant LD terms
Index

* datasets
 nlsy27, 3
 sim18ccfa40, 11
 sim18ccfa41, 12
 sim18cfa0, 12
 sim18cfa1, 13
 sim18mcfa41, 13
 sim24ccfa21, 14

* package
 LAWBL-package, 2

LAWBL-package, 2

nlsy27, 3

pcfa, 4
pcirm, 6, 17
pefa, 8
plot_lawbl, 4, 6, 8, 10

sim18ccfa40, 11
sim18ccfa41, 12
sim18cfa0, 12
sim18cfa1, 13
sim18mcfa41, 13
sim24ccfa21, 14
sim_lvm, 14
summary.lawbl, 4–9, 16