
Package ‘CurricularComplexity’
January 9, 2026

Type Package

Title Toolkit for Analyzing Curricular Complexity

Version 1.0.1

Author David Reeping [aut, cre]

Maintainer David Reeping <reepindp@ucmail.uc.edu>

Description Enables educational researchers and practitioners to calculate the curricular complex-
ity of a plan of study, visualize its prerequisite structure at scale, and conduct customizable anal-
yses. The original tool can be found at <https://curricularanalytics.org>. Addi-
tional functions to explore curriculum complexity from the literature are also included.

Depends R (>= 3.6.2), igraph (>= 1.2.5)

Encoding UTF-8

License MIT + file LICENSE

Suggests knitr, rmarkdown

VignetteBuilder knitr

RoxygenNote 7.3.3

NeedsCompilation no

Repository CRAN

Date/Publication 2026-01-09 00:40:08 UTC

Contents
admissibility_test . 2
average_sequencing . 2
blocking_factor . 3
core_collapse . 4
create_plan_of_study . 4
cruciality . 5
curriculum_rigidity . 6
deferment_factor . 6
delay_factor . 7
explained_complexity . 7

1

https://curricularanalytics.org

2 average_sequencing

find_bottlenecks . 8
find_inbound_courses . 9
find_outbound_courses . 9
inflexibility_factor . 10
plot_plan_of_study . 10
reachability_factor . 11
simplify_requisites . 11
structural_complexity . 12
student_mobility_turbulence . 12
subcomplexity_graph . 13
transfer_delay_factor . 14
transfer_excess_courses . 14

Index 16

admissibility_test Automatically check for data entry issues

Description

This function takes in a plan of study, then checks for potential data entry issues. It will detect issues
in formatting with the csv (such as notes creating empty rows), if there are cycles in the network,
and if pre- and corequisites are appropriately defined.

Usage

admissibility_test(plan_of_study)

Arguments

plan_of_study igraph object - An igraph object created using the create_plan_of_study function

Value

List of errors to correct for cycles, prereqs, and coreqs

average_sequencing Calculates the average sequencing in a program

Description

This function calculates the average sequencing in the program using the delay factors of the
courses. The second argument, expected_time_to_degree is optional. If it is not NULL, the av-
erage sequencing will be for courses extending the student’s time to degree.

blocking_factor 3

Usage

average_sequencing(plan_of_study, expected_time_to_degree = NULL)

Arguments

plan_of_study igraph object - An igraph object created using the create_plan_of_study function

expected_time_to_degree

Numeric - The term where students are expected to finish (often 8)

Value

Numeric - the average sequencing in the program

blocking_factor Calculates the blocking factor of a course

Description

This function takes in a plan of study and a course, then finds that course’s blocking factor. The
value is the number of courses ’blocked’ by failing the given course.

Usage

blocking_factor(plan_of_study, course, include_coreqs = TRUE)

Arguments

plan_of_study igraph object - An igraph object created using the create_plan_of_study function

course Numeric (vertex id) or String - The course to calculate the blocking factor of

include_coreqs logical - Indicates whether corequisites should be included in the calculation

Value

Numeric - the blocking factor

4 create_plan_of_study

core_collapse Calculates the core collapse sequence for a plan of study

Description

This function takes in a plan of study network and constructs the "core collapse sequence." The
core collapse sequence progressively removes courses from the plan of study with increasing prereq
counts and calculates the proportion of courses deleted at each step. The process stops when all of
the vertices have been removed. A sequence that decreases quickly to zero typically indicates that
the network is generally uniform with its prereqs. A sequence with more erratic values that does
not settle to zero smoothly would imply more dense sets of prereqs.

Usage

core_collapse(plan_of_study)

Arguments

plan_of_study igraph object - An igraph object created using the create_plan_of_study function

Value

List of two items: (1) sequence - the core collapse sequence, (2) the associated network for each
entry

create_plan_of_study Create a plan of study igraph object

Description

This function takes in a set of courses, their terms, prerequisites, and corequisites. Optional argu-
ments include the number of credits, pass rates, lost credits from transferring, and the frequency
of course offerings. The function creates an igraph structure of edges and nodes with the given
qualities.

Usage

create_plan_of_study(
Course,
Term,
Prereq,
Coreq,
Credits = NULL,
LostCredits = NULL,
PassRate = NULL,
Timing = NULL,
Institution = NULL

)

cruciality 5

Arguments

Course atomic vector - strings for each course

Term a numeric atomic vector - the term each course is offered

Prereq atomic vector - strings of the courses’ prereqs, separated by commas

Coreq atomic vector - strings of the courses’ coreqs, separated by commas

Credits numeric atomic vector - number of credits each course is worth (optional)

LostCredits numeric atomic vector - (for transfer students) identifies if credit for the course
is not applied toward a student’s degree, 1. If it is, 0. (optional)

PassRate numeric atomic vector - pass rates by class (optional)

Timing numeric atomic vector - number of times the course is offered in 2 years (op-
tional)

Institution atomic vector - strings of course affiliations (CC or FY)

Details

It is recommended that the user imports the data from a csv file to ensure the indices for each atomic
vector correspond to the attributes of one course.

Value

An igraph object of the prerequisite structure

cruciality Calculates the cruciality of a course

Description

This function takes in a plan of study and a course, then finds that course’s cruciality. The value is
the sum of the blocking and delay factors of the course

Usage

cruciality(plan_of_study, course, include_coreqs = TRUE)

Arguments

plan_of_study igraph object - An igraph object created using the create_plan_of_study function

course Numeric (vertex id) or String - The course to calculate the cruciality of

include_coreqs logical - Indicates whether corequisites should be included in the calculation

Value

Numeric - the course’s cruciality

6 deferment_factor

curriculum_rigidity Calculates the curriculum rigidity

Description

This function takes in a plan of study and then finds the curriculum’s rigidity. The rigidity is the
beta index of the graph, which is the number of prerequisites divided by the number of courses

Usage

curriculum_rigidity(plan_of_study)

Arguments

plan_of_study igraph object - An igraph object created using the create_plan_of_study function

Value

Numeric - the curriculum rigidity

deferment_factor Calculates the deferment factor of a course

Description

This function takes in a plan of study and a course, then finds that course’s deferment factor. The
value captures the number of terms the student can fail the course before extending their time to
degree.

Usage

deferment_factor(plan_of_study, course, expected_time_to_degree)

Arguments

plan_of_study igraph object - An igraph object created using the create_plan_of_study function

course Numeric (vertex id) or String - The course to calculate the deferment factor of
expected_time_to_degree

Numeric - The term where students are expected to finish (often 8)

Value

Numeric - the deferment factor

delay_factor 7

delay_factor Calculates the delay factor of a course

Description

This function takes in a plan of study and a course, then finds that course’s delay factor. The output
is the longest path of prerequisites through the given course.

Usage

delay_factor(plan_of_study, course, include_coreqs = TRUE)

Arguments

plan_of_study igraph object - An igraph object created using the create_plan_of_study function

course Numeric (vertex id) or String - The course to calculate the delay factor of

include_coreqs Logical - Calculates the delay factor using corequisites, default value is TRUE

Value

Numeric - the delay factor

explained_complexity Calculates the explained complexity of courses extending time to de-
gree

Description

This function takes in the subcomplexity graph from the transfer excess courses function, then finds
the transfer delay factor. The output is the proportion of complexity explained by courses extending
time to degree.

Usage

explained_complexity(
plan_of_study,
expected_time_to_degree,
term_weighted = FALSE

)

Arguments

plan_of_study igraph object - An igraph object created using the create_plan_of_study function
expected_time_to_degree

Numeric - The term where students are expected to finish (often 8)

term_weighted logical - TRUE if crucialities should be term-weighted

8 find_bottlenecks

Value

Numeric - the explained complexity

find_bottlenecks Finds the bottlenecks in the plan of study based on prerequisite rela-
tionships

Description

This function takes in a plan of study and three parameters. In this case, we choose min_prereq,min_postreq,
and min_connections. The value of min_prereq is the minimum number of prerequisites defining
a bottleneck (in the user’s perspective), whereas min_postreq is the minimum number of courses
the given course is a prerequisite for. Finally, min_connections is the minimum total of the number
of prerequisites and the number of courses the given course is a prerequisite for. A course is a
bottleneck if it meets at least one of the parameters

Usage

find_bottlenecks(
plan_of_study,
min_prereq = 3,
min_postreq = 3,
min_connections = 5,
include_coreqs = TRUE

)

Arguments

plan_of_study igraph object - An igraph object created using the create_plan_of_study function
min_prereq numeric - minimum number of prerequisites defining a bottleneck
min_postreq numeric - minimum number of courses the given course is a prerequisite for
min_connections

numeric - minimum total of the number of prerequisites
include_coreqs boolean - default is TRUE, treats corequisites as prerequisites and the number

of courses the given course is a prerequisite for

Details

Suggested values for typical usage is find_bottleneck(x,3,3,5), which are #’ provided by default.
Note that min_connections >= min_prereq + min_postreq - 2. If this is violated, a warning is
provided and corrected to the suggested minimum value of min_prereq + min_postreq - 2.

The output is an atomic vector of possible bottlenecks based on the user-defined parameters.

Value

atomic vector - list of courses meeting at least one condition of the three parameters

find_inbound_courses 9

find_inbound_courses Find all possible prerequisites to a course

Description

This function takes in a plan of study and a course, then finds all the courses it is related to through
its prerequisites

Usage

find_inbound_courses(plan_of_study, course)

Arguments

plan_of_study An igraph object created using the create_plan_of_study function

course The course to find all relevant prerequisites of

Value

An atomic vector of vertex ids for the course’s prerequisites

find_outbound_courses Find all possible courses that depend on a particular course

Description

This function takes in a plan of study and a course, then finds all the courses it is related to through
its prerequisites (after the course).

Usage

find_outbound_courses(plan_of_study, course)

Arguments

plan_of_study An igraph object created using the create_plan_of_study function

course The course to find all relevant courses that directly or indirectly have it as a
prereq

Value

An atomic vector of vertex ids for the course’s following courses

10 plot_plan_of_study

inflexibility_factor Calculates inflexibility factor of a plan of study

Description

Calculates the inflexibility factor for courses that have specific offering times extending chains
beyond the expected time to degree.

Usage

inflexibility_factor(plan_of_study, time_to_degree)

Arguments

plan_of_study igraph object - An igraph object created using the create_plan_of_study function
time_to_degree numeric - expected time to degree, often 8

Value

list of (1) a dataframe of inflexibility factors and (2) a total inflexibility factor

plot_plan_of_study Plots the plan of study with courses ordered by term

Description

This function takes in a plan of study and plots it in the ’plot’ window. The courses are ordered
horizontally by term and vertically by the outdegree (i.e., number of prereqs) of the vertices in that
column/term. The shading of the nodes corresponds to the cruciality of the course. A darker blue
indicates higher cruciality while white indicates lower cruciality.

Usage

plot_plan_of_study(plan_of_study)

Arguments

plan_of_study igraph object - An igraph object created using the create_plan_of_study function

Details

Note that there can be some overlap where a course is covering a path for a prereq, which may make
is seem like a course is a prereq for some other course when it is in fact the course in a previous
semester.

Value

Plots the plan of study in the ’plot’ window

reachability_factor 11

reachability_factor Calculates the reachability factor of a course

Description

This function takes in a plan of study and a course, then finds that course’s reachability factor. The
value is the number of courses needed to be passed before enrolling in the given course.

Usage

reachability_factor(plan_of_study, course, include_coreqs = TRUE)

Arguments

plan_of_study igraph object - An igraph object created using the create_plan_of_study function

course Numeric (vertex id) or String - The course to calculate the blocking factor of

include_coreqs logical - Indicates whether corequisites should be included in the calculation

Value

Numeric - the reachability factor

simplify_requisites Convert requisites to original notation

Description

This function takes in either the pre or corequisites of a plan of study as a vector, then removes
any additional information like OR relationships and minimum grades such that the network can be
analyzed using the traditional functions.

Usage

simplify_requisites(requisites)

Arguments

requisites vector object - A vector describing the pre and corequisites (as strings)

Value

vector object - A simplified vector describing the pre and corequisites (as strings)

12 student_mobility_turbulence

structural_complexity Calculates structural complexity of a plan of study

Description

This function takes in a plan of study, then finds the plan of study’s structural complexity.

Usage

structural_complexity(
plan_of_study,
term_weighted = FALSE,
include_coreqs = TRUE,
quarters = FALSE

)

Arguments

plan_of_study igraph object - An igraph object created using the create_plan_of_study function

term_weighted logical - TRUE if crucialities should be term-weighted

include_coreqs logical - TRUE if coreqs should be included when calculating blocking and
delay factor

quarters logical - TRUE if the plan of study uses quarters instead of semesters

Value

list of (1) a dataframe of course crucialities, delay factors, and blocking factors; (2) a numeric value
of structural complexity

student_mobility_turbulence

Calculates the student mobility turbulence for a program

Description

This metric captures the volatility in student progression by analyzing the withdraws and major
changes, which can indicate structural barriers or inefficiencies in the curriculum. This is most
useful to apply to a combination of programs or a unit, like a department or college. There are two
coefficients, withdrawn and changed major that can be used to prioritize either of the two causes for
turbulence. They are set to 1 and 0.5 by default, respectively.

subcomplexity_graph 13

Usage

student_mobility_turbulence(
number_withrawn,
number_changed_major,
total_number_of_students,
withdrawn_coefficient = 1,
changed_major_coefficient = 0.5

)

Arguments

number_withrawn

numeric - the total number of students who dropped out of a program in a given
unit

number_changed_major

numeric - the total number of students who changed majors in a given unit
total_number_of_students

numeric - the total number of students in a given unit starting at a specific time
withdrawn_coefficient

numeric - a coefficient weighting the number of students who dropped out
changed_major_coefficient

numeric - a coefficient weighting the number of students who changed majors
out

Value

numeric - The student mobility turbulence

subcomplexity_graph Creates a subcomplexity graph for a course

Description

This function takes in a plan of study and course, then constructs the subcomplexity graph for the
course.

Usage

subcomplexity_graph(plan_of_study, course)

Arguments

plan_of_study igraph object - An igraph object created using the create_plan_of_study function
course Numeric (vertex id) or String - The course to find the subcomplexity graph of

Value

igraph object representing the course’s subcomplexity graph.

14 transfer_excess_courses

transfer_delay_factor Calculates the transfer delay factor of a course

Description

This function takes in the subcomplexity graph from the transfer excess courses function, then finds
the transfer delay factor. The output is the sum of the longest paths of prerequisites through courses
related to those beyond the expected time to degree.

Usage

transfer_delay_factor(plan_of_study, expected_time_to_degree)

Arguments

plan_of_study igraph object - An igraph object created using the create_plan_of_study function
expected_time_to_degree

Numeric - The term where students are expected to finish (often 8)

Value

Numeric - the transfer delay factor

transfer_excess_courses

Finds the subcomplexity graph of courses beyond expected time to de-
gree

Description

This function takes in a plan of study and the expected time to degree, then outputs a subcomplexity
graph that contains all of the courses beyond the time to degree and their prerequisites.

Usage

transfer_excess_courses(
plan_of_study,
expected_time_to_degree,
include_coreqs = TRUE

)

Arguments

plan_of_study igraph object - An igraph object created using the create_plan_of_study function
expected_time_to_degree

Numeric - The term where students are expected to finish (often 8)
include_coreqs Logical - Calculates the delay factor using corequisites, default value is TRUE

transfer_excess_courses 15

Value

igraph object - the subcomplexity graph

Index

admissibility_test, 2
average_sequencing, 2

blocking_factor, 3

core_collapse, 4
create_plan_of_study, 4
cruciality, 5
curriculum_rigidity, 6

deferment_factor, 6
delay_factor, 7

explained_complexity, 7

find_bottlenecks, 8
find_inbound_courses, 9
find_outbound_courses, 9

inflexibility_factor, 10

plot_plan_of_study, 10

reachability_factor, 11

simplify_requisites, 11
structural_complexity, 12
student_mobility_turbulence, 12
subcomplexity_graph, 13

transfer_delay_factor, 14
transfer_excess_courses, 14

16

	admissibility_test
	average_sequencing
	blocking_factor
	core_collapse
	create_plan_of_study
	cruciality
	curriculum_rigidity
	deferment_factor
	delay_factor
	explained_complexity
	find_bottlenecks
	find_inbound_courses
	find_outbound_courses
	inflexibility_factor
	plot_plan_of_study
	reachability_factor
	simplify_requisites
	structural_complexity
	student_mobility_turbulence
	subcomplexity_graph
	transfer_delay_factor
	transfer_excess_courses
	Index

