CNSigs: An R package for the identification of copy
number signatures

David Tallman
The Ohio State University

Abstract

Copy number aberrations (CNAs) are gains and losses of large genomic segments
present across most cancer types and are a hallmark of cancer genomic alterations. How-
ever, the processes underlying CNAs and characteristic patterns of CNAs are poorly
understood. Using single nucleotide variant (SNV) data, bioinformatic advances have
identified underlying mutational signatures resulting from distinct mutational processes.
Mutational signatures have led to a variety of discoveries, several of which are being inves-
tigated in clinical management of cancer. The development of algorithms able to uncover
similar signatures for CNAs, rather than SNVs, is still in its infancy. Here we present an
analysis package for the R programming language called CNSigs that allows for the robust
and reproducible derivation of copy number signatures. Based on a list of extracted copy
number features previously verified in ovarian cancer, we utilize mixed model approaches
and non-negative matrix factorization to derive CNA signatures across cancer types. The
development of a package to derive signatures from copy number data allows further in-
vestigation of underlying processes that may be responsible for these CNA fingerprints.
The CNSigs package also allows researchers to easily analyze their own samples to look
for signatures in their copy number profiles and to compare these to signatures previously
derived for their cancer type.

Keywords: R, copy number signatures, copy number segments.

1. Introduction

This package is used to generate and analyze signatures derived from copy number segments.
There are two main ways to use the analysis pipeline. You can either run it step by step so
that you can see the results as you go, or all at once using a single function. The individual
steps are layed out in the following sections, and the single function is described in the section
"Running the full pipeline". The package is able to save all of the results into a folder that
includes the plots and other outputs from the pipeline. The package also has many functions
to analyze and interpret your results. It also allows for parallelization and the tuning of
several parameters.



2 CNSigs: Copy number signatures in R

2. Running the Pipeline

The package can be loaded by simply using the library command. This document will begin
by walking through each step of the pipeline. The method for running the full pipeline at
once is described later in this document.

library(CNSigs)

2.1. Loading Data

The first step to using the pipeline is to load in the data. CNSigs supports running the pipeline
straight from an already formatted list or from a text file. The pipeline expects the data.frames
to only have 5 columns with the titles of "ID","chromosome","start","end","segVal". If your
text file has columns that are not named in that exact way but contains the same data, you
can use the colMap parameter in the readSegs function. If you look at the example data
below, you can see that it has all of the data that is needed, but the columns are named
differently. In order to load in that segment file properly, you must specify the mapping of
the column name to the expected column names using the colMap parameter of readSegs as

seen below.

| A | B I e [ S e S [ - | I
_1___iSampIe_ID Chrom |Start End major CM minor_CN total CN seglength |
B | 1 1 61735 16830583 1 0 1 16768848
=3l 1 1 16830820 17214822 2 1 3 384002
4 1 1 17217283 72193593 1 0 1 54976310
=5 i 1 72194476 72242590 1 1 2 48114
6| 1 1 72243242 91917019 1 1 2 19673777
R 1 1 91917282 94089731 1 0 1 2172449

8 1 1 94095259, 95532174 1 1 2 1436915
el 1 1 95536080 121482979 1 0 1 25946899
_10 1 1 144007049 146916926 3 3 B 2909877

11 1 1 146917589 147082953 2 2 4 165364
= I 1 147083114] 152744962 3 3 6 5661848

13 1 1 152747126/ 152847892 1 1 2 100766
14 1 1 152850409, 158764565 3 2 5 5914156
bl 1 1 158764612 160194350 2 2| 4 1429738
16 | 1 1 160196952 160473270 1 i 2 276318

122 1 1 160473286/ 161463601 2 2 4 990315
18 1 1 161463814 161858592 3 2 5 304778
_1el 1] 1 161859230 162268825 3 2 5 409585

20 | ¥ 1 162272769 163781153 2 2 4 1508384

e | ] 1 senTarnan 1cTnnnnnn - " = nnarcTa

readSegs("./SampleSegs.txt",colMap = c("Sample_ID","Chrom","Start","End","Total_CN"))

2.2. Smoothing the Data

One of the data preprocessing steps for the pipeline is to smooth the segments. This process
is used to reconcile the differences across different copy number calling pipelines. Since the
features extracted from the samples are directly related to the segments that were called, by
smoothing them, we are able to dampen the effects of using different copy number callers.
The package has a function called smoothSegs that is able to accomplish this. We recommend
this smoothing step no matter which copy number caller is used.



David Tallman

smooth = smoothSegs (segDataExp)

toPlot = list(segDataExp[[1]],smooth[[1]])
names (toPlot) = c("Original","Smoothed")
plotSegs(toPlot, sep = T)

Original (155)

o _]
—
w —
§ o+
(@]
& <
N — - — — — —— — -— -
T T T T T T T
0.0e+00 5.0e+08 1.0e+09 1.5e+09 2.0e+09 2.5e+09 3.0e+09
Genome Position
Smoothed (113)
o _]
—
w —
g o+
(@]
§ v -
N — - JR— [ R —— — — -
O p—

I I I — — I I
0.0e+00 5.0e+08 1.0e+09 1.5e+09 2.0e+09 2.5e+09 3.0e+09

Genome Position

As you can see above, the smoothing generally removes some of the smaller and more erroneous
segments and leaves behind the higher confidence segments. The number in the parentheses
next to the sample name denotes the number of segments. Smoothing tends to lessen the
effect of using different copy number callers on the resulting signatures.



4 CNSigs: Copy number signatures in R

2.3. Extracting the copy number features

The CNSigs package uses six different copy number features based on those used by Macyntire
et. al. Extracting these features from a dataset is very easy using the package. The function
extractCNFeats will return a list object with the six different features inside. The six features
extracted are segment size, the number of breakpoints per 10 megabase bin, the number of
copy number oscillation events, the average size of changepoints, the average copynumber,
and the number of breakpoints per chromsome arm. Most of the features are and average
value per chromosome. The features are then passed onto the mixed modelling step

feats = extractCNFeats(smooth)

2.4. Fitting the mixture models

After extracting the features, the pipeline then fits a mixture model onto each of the features
and uses these mixture models to define the underlying components of the signatures. By
default, the package will search for a mixture of between 2 and 10 models of the corresponding
distribution types for each feature. This allows the pipeline to account for cases that have
different underlying subgroups for each feature. If you want to change the range of the number
of components to look for, you can do so using the mincomps and maxcomps parameters.
Both of these are a vector of 6 values corresponding to the min or max number of components
for each of the features. For more information, refer to ?fitModels. You may also want to
skip this step and use fixed components, if so, refer to the "Fixed components" section later
in this document.

comps = fitModels(feats)

Peak Reduction

Since most of the copy number features have a "normal" value, it often results in a abnormally
large peak at that value if you have enough samples. The flexmix package, which is used for
the mixed modelling is often unable to accomodate these peaks well and will often fail to
converge when finding the components. In order to get around this, the package includes an
option to perform peak reduction before the modeling step. This method looks through the
histogram of the input feature and identifies peaks that are larger than the surrounding bins.
It then makes these peaks smaller. This preserves the overall structure of the distribution so
that the modelling step will no longer fail and the input data is mainly preserved. By setting
the pR parameter to T during your fitModels call, it will perform peak reduction before each
of the modelling steps.



David Tallman

Histogram of orignal copynumber data Histogram of copynumber after reduction

Frequency

Frequency
10 20 30 40

0 20 40 60 80 100

dffodin cdhlhino oo o o

0

T T 1 I T 1
5 10 15 5 10 15

Copynumber values Copynumber values

Figure 1: Original Figure 2: Reduced Peaks

2.5. Generating the sample by component matrix (scm)

Once you have the components, you then have to create the sample by component matrix
(scm). The scm is a matrix that shows the distribution of the components within each of the
samples. The scm is used during NMF in order to define the signatures. In order to generate
the scm, the package looks at each sample and finds the posterior probabilty that the samples
features lie within each of the derived components. It then sums these up and normalizes
them by the number of features for the sample. This gives you an idea of how much each
component can be found within a particular sample. The full pipeline automatically generates
a heatmap plot to display this scm, but it can also be done using the following code below.

scm = generateSCM(feats, cancerComps)
plotScm(scm)

Sample by Component matrix

O T T O 0O O T u n u u uw W O T UT T T T nuw o o o o nw o o a9
O T ©T uw - uw ot ® ® ® ® ® ® W T T T T U ® 3 O T ' ® u S O
T PO 0O ODO0QQQQ@@e@e@ OkRr O P P 0Q 2T P oa O T
S 29223222020 @029% 9039093233932 z3S
E52F2*2388 3885235522885 583 g ;S
2 R 3 = 3 © o N 0o W R a3 I 38383k g3 2
@ = =1 o1 & ® 5 @ N 5 @
- — - = - =
[l [l w w N DN

2.6. Adding Ploidy Data (Optional)

0.8

0.6

0.4

0.2

After generating the scm, you can include ploidy data to be used in the signature identification.
The package has a function called addPloidyData. If you give the function the scm from the



6 CNSigs: Copy number signatures in R

previous step and the samples ploidy data, it will return a new scm that includes the ploidy
data transformed to log2 ploidy. For this function make sure that you give it the absolute
ploidy because this function performs the transform to log2 by default. If you ploidy data is
in the same data file as your segment data, you can read in both at the same time using the
readSegs function using the readPloidy parameter set to TRUE.

scm = addPloidyData(scm, ploidyData)

2.7. Generating the signatures

Once the scm has been generated, you can now perform the NMF step using the createSigs
function. The main parameter for this function, besides the scm, is nsig, which determines how
many signatures the function will find. If you aren’t sure how many signatures is appropriate,
you can use the determineSigNum function as laid out in a later section. This function will
return the resulting NMF object. In order to look at the final component weights for the
signatures, you can use the NMF function scoef in order to get the scaled coefficients for
the signatures. You can also use the basis function from NMF in order to see the signature
exposures for each of the samples.

sigs = createSigs(scm, 5)

2.8. Generating the exposures

As an alternate method, after the scm has been generated, you can utalize a set of fixed
signatures with this function to identify the signature contribution of each sample. findExpo-
sures does this by using the least squares optimization method with constraints to keep the
output as non-negative with the Isei function from limSolve. The CNSigs package contains
pre-generated signatures derived from TCGA such as CancerSigs (set of 25 signatures) and
collapsedSigs (set of 13 signatures). You can save your own fixedSigs from a previous run
with createSigs then using the testResults$sigs as fixedSigs for a new run with a different
sample set.

sigs = findExposures(scm, fixedSigs)

3. Running the Full Pipeline

The descriptions above walked you through how to analyze your copy number data in a step
by step manner. The CNSigs package also allows you to do all of the above with one command
using the runPipeline command. The runPipeline function follows the flowchart layed out in
the picture below. This function allows you to specify almost all of the parameters for the
sub functions that were described above. For a full list of the parameters refer to the function
documentation using 7runPipeline. We would recommend saving the results of the pipeline to
an object so that you can investigate them further using subsequent functions. If you forget
to do so, but you specified the saveRes parameter to be T, then you can simply read in the
"Pipeline Results.rds’ and that will give you the same results data structure.



David Tallman

results = runPipeline(segDataExp)

non-null

3.1. Using Fixed components or signatures

There are many use cases where you may want to run the analysis pipeline using a fixed set
of signatures or components. The CNSigs package easily allows the user to fix either of these
parameters

Fized components

Fixing the signature components allows you to easily compare signatures across datasets
since it ensures that the underlying signature components are pointing at the same feature
distributions. Also, if the dataset you are analyzing is smaller, there may not be enough
information to get generalized components. If you are analyzing a set of cancer samples you
may want to use the components included in the package that were derived from the entire
TCGA landscape. These components are representative of all cancer types and allow you to
easily and accurately compare signatures derived from different cancer samples. Since it skips
the modelling process, it also allows you to more robustly investigate smaller datasets. In
order to use the derived cancer components, you just have to pass in the cancerComps object
from the CNSig package as seen below.

results = runPipeline(segData, components = cancerComps)

Fized signatures

You may also want to run the pipeline with not only fixed components but also fixed signa-
tures. If you have already derived signatures for a dataset, and you simply want to look at



8 CNSigs: Copy number signatures in R

which of those signatures can be seen in a new set of samples, fixing the signatures is the
way to do this. This sort of analysis is similar to what is done when looking at mutational
signatures. Since the mutational signatures have already been defined, you often want to see
which mutational signatures are present in your samples. In order to use fixed signatures in
the CNSigs pipeline, you have to both specify the components that made the signatures and
the signatures themselves. The easiest way to do this is to load up the results object from
a previous run and grab the components and signatures from there. This sort of analysis is
seen below. Just replace the ’resultsPath’ with the path to the results of the previous run.
The package includes a set of 25 unique signatures that were found by looking at all 33 cancer
types in the TCGA dataset.

newResults = runPipeline(segData, components = referenceExp$CN_components,
fixedSigs = referenceExp$sigs)

3.2. Ploidy Data

In the case where you are using fixed signatures and components that utalize ploidy data
you can add your segment ploidy data into the pipeline function as ploidyData. The pipeline
requires input ploidyData if your fixed signatures were build with ploidy.

newResults = runPipeline(segData, components = cancerComps,
fixedSigs = collapsedSigs, ploidyData = segPloidy)

4. Analyzing your results

This package includes many functions that allow you to analyze the results that are given by
the pipeline. Here we will describe those functions and why it may be useful for you to use
them.

4.1. Plotting the components

One of the things that you may want to be able to do is to see what the components that
were fitted to the extracted features look like. In order to do this, you can make use of
plotComp and plotComps functions. The plotComps function simply calls plotComp for all
of the different component types. plotComp looks at the parameters for the mixture model
that was fit for the component that you specified. It then plots an approximation of those
fitted distributions. This is useful if you want to compare two independently fit component
sets. For instance, you may want to visualize how similar bpl0MB2 is across two seperate
datasets. By plotting these two components you are able to get a rough idea of how similar
they are. Follow the code samples below in order to plot your components.

plotComp (cancerComps, "bpl0OMB")

## Warning: ‘aes_string()‘ was deprecated in ggplot2 3.0.0.
## i Please use tidy evaluation idioms with ‘aes() ‘.



David Tallman 9

## i See also ‘vignette("ggplot2-in-packages")‘ for more information.

## 1 The deprecated feature was likely used in the CNSigs package.

##  Please report the issue to the authors.

## This warning is displayed once every 8 hours.

## Call ‘lifecycle::last_lifecycle_warnings() ¢ to see where this warning was
## generated.

## Warning: Using ‘size‘ aesthetic for lines was deprecated in ggplot2 3.4.0.
## i Please use ‘linewidth‘ instead.

## i The deprecated feature was likely used in the CNSigs package.

##  Please report the issue to the authors.

## This warning is displayed once every 8 hours.

## Call ‘lifecycle::last_lifecycle_warnings() ‘¢ to see where this warning was
## generated.

bp10MB Components

3.00-
Components
2.00-
—— Compl
— Comp2
— Comp3
— Comp4
1.00-
—— Comp5
0.00-

0 2 4 6 8
Breakpoint count per 10MB

plotComps (cancerComps) #Plots all of the components



10 CNSigs: Copy number signatures in R

segsize Components bp1OMB Components 0SCN Components
Componens
e Componens Coponens
' | compt comsz
cos ot
o come ‘
| |
I /
WO L LA . _ o o N N _
seqmentsie " i camepor 148 Number o Osclaions
Figure 3: Segment Size Figure 4: Breakpoints per 10MB Figure 5: Number of Oscillations

changepoint Components bpchrarm Components
copynumber Components .

Components
Components compt

~ Compt Components — com2

— com2 =0 Comp1 — comps

— comps — com2 — comps
Comps

Copy-number change point Breakpoint count per chr arm

Flgure 6: Copy Number Change- Figure 7: Copynumber Figure 8: Breakpoints per chromo-
point some arm

4.2. Determining signature similarity

Another useful thing that you may want to do is to estimate the similarity between two
signatures. There are multiple ways of looking at the similarity of signatures.

Same components, similar signatures

If you believe that your two sets of signatures should be nearly identical, then you can use
the matchSigs function. This function finds the best match for each signature between the
reference and comparison set. This can be useful if you have two datasets that are made up
of similar samples, and you believe should produce similar signatures.

matchSigs (referenceExp$sigs,referenceExp$sigs)

## Average signature similarity: 1

##  TestSig ValSig CorVal

## 1 1 1 1
## 2 2 2 1
## 3 3 3 1
## 4 4 4 1
## 5 5 5 1



David Tallman

Same components, different signatures

If you don’t expect your signatures to be the same, but you used the same components
to derive both signature sets (ie. cancerComps), then you can use the sigSim function.
This function compares each signature in the reference set to every other signature in the
comparison set. It then plots a heatmap that shows the similarity of the signatures. (NOTE:

The output of this function is useful iff the components in both signature sets are identical)

sigSim(referenceExp,referenceExp)

##
#i#
##
#it
##
#it

CompSigl

RefSigl
RefSig?2
RefSig3
RefSigsd
RefSigh

Signature Similarity

CompSig2

CompSigl
1.000000
0.469835
0.743187
0.602059
0.752086

CompSig2
0.469835
1.000000
0.752032
0.634783
0.418413

CompSig3

CompSig3
0.743187
0.752032
1.000000
0.447967
0.735859

CompSig4

CompSigé
0.602059
0.634783
0.447967
1.000000
0.282534

CompSigh
0.752086
0.418413
0.735859
0.282534
1.000000

CompSig5

1

0.8
RefSigl

0.6

0.4
RefSig2 0.2

0
RefSig3
RefSig4
RefSig5



12 CNSigs: Copy number signatures in R

Different Components

If you let the pipeline fit the models independently, then the sigSim function recognizes that
the the underlying components are no longer the same and don’t point to the same data. In
this case, we utilize a method to estimate the signature similarities. We first attempt to recreat
the underlying feature distributions that made up a signature by creating a distribution of
simulated values vased on the feature models and the component weights in the signatures.
The two simulated feature distributions are then compared using the ks statistical test. This
gives a similarity per component and then each component similarity is averaged to give an
overall signature similarity.

4.3. Plotting Signature Exposure

It is very useful to visualize the exposure of your samples to the signatures. The pipeline
generates the plot automatically, but the package includes two functions that allow you to do
this yourself as well.

Signature Exposure Matriz Visualization

This heatmap based visualization is the default visualization method used by the pipeline.
Using this function, you are able to specify the ordering of both the rows and columns of
the plot. The ordering parameters can either allow you to order the values using heirarchical
clustering or with a user specified order for the data.

plotSigExposureMat (referenceExp$sigExposure)



David Tallman 13

Patient by Signature matrix

0.7
0.6
0.5
0.4
0.3
0.2
0.1

Signature Exposure Stacked Bar Visualization

Another way of visualizing the signature exposures is via a stacked bar plot. The package has
a function called plotSigExposure that allows you to create this different visualization. One
of the best features this function allows for is the inclusion of additional data to be displayed
as tracks along the plot. You can also specify a specific set of sorting instructions to allow
you to sort the exposure plot by both the exposures and also the trackData.

plotSigExposure(referenceExp$sigExposure)



14 CNSigs: Copy number signatures in R

1.00-

0.75-

Exposure
o
a1
o

0.25-

0.00-
Samples

This function allows you to add on data as tracks. If you only want to add a single track,
you can pass in a vector of data in the same order as the samples in the sighxposure matrix
using the trackData parameter. You can plot up to 3 tracks by passing them in as a list.

sigExposure = referenceExp$sigExposure

# Generate random data to represent track data
sampleTrackData = sample(c(1,2,3,4) ,ncol(sigExposure),T)
sampleTrackData2 = sample(c(1,2,3,4),ncol(sigExposure),T)

# Plot with a single track
plotSigExposure(sigExposure,trackData = sampleTrackData)

1.00- track

0.75-

Exposure
o
a
o

comp

0.25-

0.00-

Samples



David Tallman 15

# Plot multiple tracks.
plotSigExposure(sigExposure, trackData = list(sampleTrackData,sampleTrackData2))

track
H'HE BN BBl

1.00-

0.75-

]
o
1

Exposure
o

0.25-

0.00-

Samples

Using this function you are able to sort the plot in many different ways by using the sortOrder
parameter. When you give the function a set of trackData, it allows you to begin to specify
the sortOrder. This allows your to sort the main plot in a different order. "m" represents the
main plot, and "t" followed by the number of the track (ie: "t1","t2" ...) represents the tracks.
By chaining the values together you can specify a variety of ways to sort the final plot. As
an example, the sortOrder of "mt1t2" specifies the the plot should be sorted by the signature
exposures first followed by the first track and finally the second track. In another example,
the sortOrder of "t2mt1" specifies the plot to be sorted by track number 2 first followed by
the signature exposures and lastly by track number 1.

# Plot multiple tracks sorted by the main plot and then the first track
plotSigExposure(sigExposure, trackData = list(sampleTrackData,sampleTrackData2),
sort=T,sortOrder = "mt1")

## Warning: Removed 50 rows containing missing values or values outside the scale
range

## (‘geom_bar() ‘).

## Removed 50 rows containing missing values or values outside the scale range

## (‘geom_bar() ‘).



16 CNSigs: Copy number signatures in R

1.00-

0.75-

Exposure
o
al
o

0.25-

0.00-
Samples

# Plot multiple tracks sorted by the second track and then the first track
plotSigExposure(sigExposure, trackData = list(sampleTrackData,sampleTrackData2),
sort=T,sortOrder = "t2tim")

1.00-

0.75-

Exposure
o
al
o

0.25-

0.00-

Samples



David Tallman 17

5. Additional Options

Most of the functions within this pipeline have additional parameters that allow for further
tuning of the copy number signatures pipeline. For more information on and examples of
these parameters, refer to the package manual, or to the individual function documentation
using R’s builtin 7 notation (?functionName).

5.1. Parallelization

A large majority of the functions within this package are able to be run in parallel. Using
the cores parameter, you can specify the number of workers for the functions to use. Both
the extractCNFeats and fitModels can use a maximum of 6 workers since each worker gets
assigned one feature, of which there are 6. This will help to speed up many of the methods,
especially the NMF steps within the createSigs function. It is worth noting that having a lot
of concurrent workers can cause a spike in memory usage.

5.2. Determining Number of Signatures

The package has a function that is useful for determining the optimal number of signatures
for a given dataset. This function is called determineNumSigs, and there are three ways to
use this function. This function, by default, looks from 3 to 12 signatures, but this can be
changed by using the rmin and rmax parameters.

Within a runPipeline call

If you either don’t give a value for nsig during a call to runPipeline, or if you specify nsig to
equal 0, the pipeline will automatically run the determineNumSigs function. After it finishes
the determineNumSigs step, it will wait for user input to specify a number of signatures, and
will continue to run the rest of the pipeline. If you are saving the results, the plot will be
saved in the results folder, otherwise it should pop up for you to look at and pick a value.
As you can see in the example below, after it checks ranks 3-12 it waits for user input before
proceeding.



18 CNSigs: Copy number signatures in R

RStudio L

File Edit Code View Plots Session Build Debug Profile Tools Help

O | O - . $ Go tofileffunction « Addins « K] Project: (Nonej «
Source a0 Environment History Connections ]
* |4 | Z#*Import Dataset » | & List = -
Console Terminal Compile PDF =

7} Global Environment -

St /David/T /David_C
= test = runPipeline(segDataExp,24,0) -
Using 20 samples for the analysis.

Extracting Copy Number Features. Files Plots Packages Help Viewer =

Fxttm? ?he compan:ant models.' ¥ Zoom | - Export « @ 3, Fa.
Determining # of Signatures wia NMF.
Estimating NMF ranks for dataset.

Compute NMF rank= 3 ... + measures ... OK

Compute NMF rank= 4 .. + measures ... OK

Compute NMF rank= 5 ... + measures ... OK

Compute NMF rank= 6 ... + measures ... OK

Compute NMF rank= 7 ... + measures ... OK

Compute NMF rank= B ... + measures ... OK Data
Compute NMF rank= 9 ... + measures ... OK i
Compute NMF rank= 18 ... + measures ... OK

Compute NMF rank= 11 ... + measures ... OK e ik
Compute NMF rank= 12 ... + measures ... OK

Estimating NMF ranks for randomized data.

Compute NMF rank= 3 ... + measures ... OK Mets e lype.
Compute NMF rank= 4 ... + measures ... OK g
Compute NMF rank= 5 ... + measures ... OK =
Compute NMF rank= 6 ... + measures ... OK

Compute NMF rank= 7 ... + measures ... OK oty
Compute NMF rank= B ... + measures ... OK e
Compute NMF rank= 9 ... + measures ... OK

Compute NMF rank= 18 ... + measures ... OK

Compute NMF rank= 11 ... + measures ... OK

Compute NMF rank= 12 ... + measures ... OK

Input number of signatures to use for analysis: LB Sl 2E it .3 978 W)

Directly using determineNumSigs function

The determineNumSigs function can be used directly if you have already extracted the features
and fit the models. You can pass both the features and components to the function, then it
will search from rmin to rmax and output the plot.

smooth = smoothSegs(segDataExp)
feats = extractCNFeats(smooth)
comps = fitModels(feats)
determineNumSigs (feats, comps)

Using detSigNumPipeline function

If you mainly want to determine the number of signatures to get a better idea about your
data, you can use the detSigNumPipeline function. This function executes the first few steps
of the full pipeline all at once and stops after running the determineNumSigs function.

detSigNumPipeline (segDataExp, smooth=T)

5.3. Interpreting determineNumSigs plot

The plot generated by the methods described above displays a variety of metrics that describes
the output of the NMF. The plot compares the NMF output from the real data, to the NMF
output of randomly scrambled data. In order to determine the best number of signatures, it is
useful to look at many of these metrics in order to make a decision. Following the descriptions
of the measures below, you can pick the value for nsigs that gives you the best results. All of
these measures are calculated using the input data (solid line) and a randomized permutation



David Tallman

of the input data (dotted line). For some measures, such as sparseness, it is useful to compare
the value for the real data compared to the randomized data.

Eophamatic B et res

i1
LECE PN o i S8
k- el
A kgl
0.0 = -_. ToA 1“‘».
-~

a7 - Fg 400 = “a
- Data

" 0 % —#— Observed
: 0.6 e 200 =

3 . . - e - Randarmized

||||||||||||||||||||||||||||||

Measure lype

—— Dass

=@~ Best it

—@— Cosfliclents

@ Cansensuz

Factorization rank

Cophenetic

Also known as the cophenetic similarity or cophenetic distance, this measure describes how
similar two objects have to be in order to be grouped into the same cluster. In the context
of copy number signatures, it describes how similar two samples’ copy number profiles need
to be in order to be classified as the same signature. You ideally want to have higher values
for the cophenetic. You can imagine that if you have a low cophenetic distance, then two
samples that aren’t very similar could be classified within thes same signature.

Dispersion

The dispersion coefficient is a measure that is derived from the NMF consensus matrix. The
consensus matrix can be described as the average connectivity matrix of multiple NMF runs.
Each value in the consensus matrix essentially describes the probability that two samples
belong to the cluster across the nrun NMF runs. In our package, nrun is set to 250 to ensure
a stable consensus matrix. For a perfect consensus matrix, meaning all of the connectivity
matrices across all the NMF runs were the same, the dispersion value is 1. A lower dispersion
value means that the clusters were less reproducible across the NMF runs.

Rss

Rss stands for the residual sum of squares of the NMF model. This is a measure of how
different the final estimation is from the input data. NMF is a method designed to estimate a
factorization of the input matrix. So the rss, describes how closesly the factorization matches
the input data. You want a low value for the rss, however, since many of the NMF algorithms
are designed to minimize the rss, this measure usually does not have much effect on the
decision for the number of signatures since values across all values of nsig generally have a

19



20 CNSigs: Copy number signatures in R

low rss value.

Silhouette

Silhouette is a measure that looks at the consistency of the clusters and measures how well
each sample has been classified. For each measure it looks at how similar the sample is to
others in the same cluster compared to other clusters. A single silhouette value for a sample
ranges from -1 to 1. A lower value means that the sample is more similar to samples from
other clusters than it is to samples within its cluster. The mean silhouette across all samples
within a cluster measures how tightly grouped the samples are within that cluster. Therefore
the mean silhouette of all data across the entire dataset is a measure of how appropriately
the samples are clustered.

Sparseness

The sparseness of a vector is defined by how much energy of the vector is found in a small
number of the components. In theory, the most sparse vector, which only has one non-zero
value, would have a sparseness of 1. The least sparse vector, in which all components have an
equal value, would have a sparseness of 0. For a matrix, a sparseness measure is simply an
average sparseness of the column vectors. The sparseness of the basis matrix describes how
many components drive the signatures. A more sparse basis matrix means that the signatures
are composed of fewer components. The sparseness of the coefficients matrix describes how
many signatures each sample belongs to. A more sparse coefficients matrix means that each
sample is made up of fewer signatures

5.4. Remapping the Pipeline Results

There are times where you may want to either reorder the signatures that were found during
an analysis or maybe just give the signatures names. The package has a function called
remapResults to help you do this. You give it the path of an entire results folder and then
either a numeric mapping for the signatures or a set of names for the signatures. The function
will generate a new results folder where all of the outputs are rearranged according to the
new mapping and regenerating all of the plots in the new order.

5.5. Subsetting the features used

Many of the functions in the pipeline have a optional parameter in them to specify which
features to use. By utilizing this function you are able to generate copy number signatures
using any subset of the features that you want. For instance, if you dont want to include
copy number oscillations in your final signatures you can remove this feature from the list
of features to use and it will not be used. There is a vector included in the package called
defaultFeats that includes the names of the default features. It is useful to use this vector
and simply select the features you wish to use and pass this vector into the functions.

defaultFeats

## [1] "segsize" "bp10OMB" "osCN" "changepoint" "copynumber"
## [6] "bpchrarm"



David Tallman
desiredFeats = defaultFeats[-3]
desiredFeats

## [1] "segsize" "bp10OMB" "changepoint" "copynumber"

results = runPipeline(segDataExp,featsToUse = desiredFeats)

5.6. Different Genome Builds

One of the important factors for the package to work properly is to ensure that you are
specifying the genome build correctly. The package uses both the lengths of the chromosomes
and the positions of the centromeres when extracting some of the copy number features.
Since these values change from one build to another it is important to specify the genome
build correctly. Be default, the genome build is assumed to be hgl9. Currently the package
can support hgl8, hgl9, and hg38. Both the runPipeline and the extractCNFeats have a

parameter called gbuild that allows you to specify the genome build.

Affiliation:

David Tallman

The Ohio State University

512 BRT 460 W 12th Ave,

Columbus, OH 43210

E-mail: tallman.52@osu.edu

URL: https://u.osu.edu/stoverlab/

"bpchrarm"

21


mailto:tallman.52@osu.edu
https://u.osu.edu/stoverlab/

	Introduction
	Running the Pipeline
	Loading Data
	Smoothing the Data
	Extracting the copy number features
	Fitting the mixture models
	Peak Reduction

	Generating the sample by component matrix (scm)
	Adding Ploidy Data (Optional)
	Generating the signatures
	Generating the exposures

	Running the Full Pipeline
	Using Fixed components or signatures
	Fixed components
	Fixed signatures

	Ploidy Data

	Analyzing your results
	Plotting the components
	Determining signature similarity
	Same components, similar signatures
	Same components, different signatures
	Different Components

	Plotting Signature Exposure
	Signature Exposure Matrix Visualization
	Signature Exposure Stacked Bar Visualization


	Additional Options
	Parallelization
	Determining Number of Signatures
	Within a runPipeline call
	Directly using determineNumSigs function
	Using detSigNumPipeline function

	Interpreting determineNumSigs plot
	Cophenetic
	Dispersion
	Rss
	Silhouette
	Sparseness

	Remapping the Pipeline Results
	Subsetting the features used
	Different Genome Builds


