Package 'seedCCA'

October 14, 2022
Type Package
Title Seeded Canonical Correlation Analysis
Version 3.1
Date 2022-06-09
Author Jae Keun Yoo, Bo-Young Kim
Maintainer Jae Keun Yoo peter.yoo@ewha.ac.kr
Description Functions for dimension reduction through the seeded canonical correlation analy-sis are provided. A classical canonical correlation analysis (CCA) is one of useful statisti-cal methods in multivariate data analysis, but it is limited in use due to the matrix inver-sion for large p small n data. To overcome this, a seeded CCA has been pro-posed in Im, Gang and Yoo (2015) \doi\{10.1002/cem. 2691$\}$. The seeded CCA is a two-step pro-cedure. The sets of variables are initially reduced by successively project-ing $\operatorname{cov}(\mathrm{X}, \mathrm{Y})$ or $\operatorname{cov}(\mathrm{Y}, \mathrm{X})$ onto $\operatorname{cov}(\mathrm{X})$ and $\operatorname{cov}(\mathrm{Y})$, respectively, without loss of informa-tion on canonical correlation analysis, follow-
ing Cook, Li and Chiaromonte (2007) \doi\{10.1093/biomet/asm038\} and Lee and Yoo (2014) \doi\{10.1111/anzs.12057\}. Tical correlation is finalized with the initially-reduced two sets of variables.
License GPL (>= 2.0)
Depends R(>=2.10.0)
Imports CCA, corpcor, stats, graphics
Repository CRAN
LazyData yes
Encoding UTF-8
RoxygenNote 6.0.1
NeedsCompilation no
Date/Publication 2022-06-09 04:40:03 UTC
R topics documented:
coef.seedCCA 2
cookie 3
covplot 4
finalCCA 5
fitted.seedCCA 6
iniCCA 6
nutrimouse 7
plot.seedCCA 8
Pm 10
print.seedCCA 10
seedCCA 11
seeding 15
seeding.auto.stop 16
seedols 17
seedpls 18
selectu 19
Index 21

coef. seedCCA

Coefficients of ordinary and partial least squares through iterative
projections

Description

Returns coefficients of partial least squares through iterative projections. It works only for subclasses "seedols" and seedpls".

Usage

\#\# S3 method for class 'seedCCA'
coef(object, u=NULL,...)

Arguments

object The name of an object of class "seedCCA"
$\mathrm{u} \quad$ numeric, the number of projections. The default is NULL. This option is valid for PLS alone. The option returns the coefficient estimates for u projections. For example, if it is specified at k , then the coefficient estimates with k projections are returned.
.. arguments passed to the coef.method

Examples

```
######## data(cookie) ########
data(cookie)
myseq<-seq(141,651,by=2)
X<-as.matrix(cookie[-c(23,61),myseq])
Y<-as.matrix(cookie[-c(23,61),701:704])
    fit.ols1 <- seedCCA(X[,1:4], Y[,1], type="cca")
```

```
fit.pls1 <- seedCCA(X,Y[,1],type="pls")
coef(fit.ols1)
coef(fit.pls1)
coef(fit.pls1, u=4)
```

```
cookie cookie dataset
```


Description

This data set contains measurements from quantitative NIR spectroscopy. The example studied arises from an experiment done to test the feasibility of NIR spectroscopy to measure the composition of biscuit dough pieces (formed but unbaked biscuits). Two similar sample sets were made up, with the standard recipe varied to provide a large range for each of the four constituents under investigation: fat, sucrose, dry flour, and water. The calculated percentages of these four ingredients represent the 4 responses. There are 40 samples in the calibration or training set (with sample 23 being an outlier) and a further 32 samples in the separate prediction or validation set (with example 21 considered as an outlier).

An NIR reflectance spectrum is available for each dough piece. The spectral data consist of 700 points measured from 1100 to 2498 nanometers (nm) in steps of 2 nm .

Usage
 data(cookie)

Format

A data frame of dimension 72×704. The first 700 columns correspond to the NIR reflectance spectrum, the last four columns correspond to the four constituents fat, sucrose, dry flour, and water. The first 40 rows correspond to the calibration data, the last 32 rows correspond to the prediction data.

References

Please cite the following papers if you use this data set.
P.J. Brown, T. Fearn, and M. Vannucci (2001) Bayesian Wavelet Regression on Curves with Applications to a Spectroscopic Calibration Problem. Journal of the American Statistical Association, 96, pp. 398-408.
B.G. Osborne, T. Fearn, A.R. Miller, and S. Douglas (1984) Application of Near-Infrared Reflectance Spectroscopy to Compositional Analysis of Biscuits and Biscuit Dough. Journal of the Science of Food and Agriculture, 35, pp. 99-105.

Examples

data(cookie) \# load data
X<-as.matrix(cookie[,1:700]) \# extract NIR spectra
$\mathrm{Y}<-$ as.matrix(cookie[,701:704]) \# extract constituents
Xtrain<-X[1:40,] \# extract training data
Ytrain<-Y[1:40,] \# extract training data
Xtest<-X[41:72,] \# extract test data
Ytest<-Y[41:72,] \# extract test data
covplot scree-ploting $\operatorname{cov}(X, Y)$

Description

Returns a scree-plot of the eigenvalues of $\operatorname{cov}(f i r s t . s e t$, second.set) to select its first d largest eigenvectors.

Usage

covplot (X, Y, mind=NULL)

Arguments

X	numeric matrix $(\mathrm{n} * \mathrm{p}), \mathrm{X}$
Y	numeric matrix $(\mathrm{n} * \mathrm{r}), \mathrm{Y}$
mind	numeric, the number of the eigenvalues to show their cumulative percentages.
	The default is NULL, and then it is equal to min(p,r)

Value

eigenvalues the ordiered eigenvalues of $\operatorname{cov}(\mathrm{X}, \mathrm{Y})$
cum.percent the cumulative percentages of the eigenvalues
num. evecs a vector of the numbers of the eigenvectors which forces the cumulative percentages bigger than $0.6,0.7,0.8,0.9$

Examples

```
data(cookie)
myseq<-seq(141,651,by=2)
X<-as.matrix(cookie[-c(23,61),myseq])
Y<-as.matrix(cookie[-c(23,61),701:704])
covplot(X, Y)
covplot(X, Y, mind=4)
```

finalCCA finalized CCA in seeded CCA

Description

Returns the results of the finalized step in seeded CCA.

Usage

finalCCA(X, Y)

Arguments

X
Y

Value

cor	canonical correlations in finalized step the estimated canonical coefficient matrix of the initially-CCAed first set of vari- ables xcoef
ycoef	the estimated canonical coefficient matrix of the initially-CCAed second set of variables
Xscores	the finalized canonical variates of the first set of variables
Yscores	the finalized canonical variates of the second set of variables

Examples

```
######## data(cookie) ########
data(cookie)
myseq <- seq(141, 651, by=2)
X <- as.matrix(cookie[-c(23,61), myseq])
Y <- as.matrix(cookie[-c(23,61), 701:704])
min.pr <- min( dim(X)[2], dim(Y)[2])
MX0 <- iniCCA(X, Y, u=4, num.d=min.pr)
ini.X <- X %*% MX0
finalCCA(ini.X, Y)
######## data(nutrimouse) ########
data(nutrimouse)
Y<-as.matrix(nutrimouse$lipid)
X<-as.matrix(nutrimouse$gene)
MX0 <- iniCCA(X, Y, u=4, num.d=4)
MY0 <- iniCCA(Y, X, u=5, num.d=4)
ini.X <- X %*% MX0
ini.Y <- Y %*% MY0
finalCCA(ini.X, ini.Y)
```


Description

Returns fitted values of ordinary and partial least squares through iterative projections. It works only for subclasses "seedols" and "seedpls".

Usage

\#\# S3 method for class 'seedCCA'
fitted(object, u=NULL,...)

Arguments

object The name of an object of class "seedCCA"
$\mathrm{u} \quad$ numeric, the number of projections. The default is NULL. This option is valid for PLS alone. The option returns the fitted values for u projections. For example, if it is specified at k , then the fitted values with k projections are returned.
... arguments passed to the fitted.method

Examples

```
\#\#\#\#\#\#\#\# data(cookie) \#\#\#\#\#\#\#\#
\#\#\#\#\#\#\#\# data(cookie) \#\#\#\#\#\#\#\#
data(cookie)
myseq<-seq(141,651,by=2)
\(X<-\) as.matrix (cookie[-c \((23,61)\), myseq])
\(\mathrm{Y}<-\) as.matrix (cookie[-c \((23,61), 701: 704])\)
fit.ols1 <- seedCCA(X[,1:4], Y[,1], type="cca")
fit.pls1 <- seedCCA(X, Y[,1], type="pls")
fit.pls2 <- seedCCA(X, Y[,1], type="pls", scale=TRUE)
fitted(fit.ols1)
fitted(fit.pls1)
fitted(fit.pls1, u=4)
fitted(fit.pls2, u=4)
```

iniCCA Initialized CCA in seeded CCA

Description

Returns the canonical coefficient matrices from the initialized step in seeded CCA. The initialzied CCA is done only for the first set in its first argument. The num. d must be less than or equal to the dimension of the second set.

Usage

iniCCA(X, Y, u, num.d)

Arguments

X numeric matrix $(\mathrm{n} * \mathrm{p})$, the first set of variables: this set of variables alone is reduced.

Y numeric matrix ($\mathrm{n} * \mathrm{r}$), the second set of variables
u numeric, the terminiating index of the projection
num.d numeric, the first "num.d" eigenvectors of $\operatorname{cov}(X, Y)$ to replace $\operatorname{cov}(X, Y)$, if $\min (\mathrm{p}, \mathrm{r})$ relatively bigger than n . The num. d must be less than or equal to $\min (\mathrm{p}, \mathrm{r})$.

Value

B the initialized CCAed coefficient matrix projected by the value of u

Examples

```
    ######## data(cookie) ########
    data(cookie)
    myseq<-seq(141,651,by=2)
    X<-as.matrix(cookie[-c(23,61),myseq])
    Y<-as.matrix(cookie[-c(23,61),701:704])
    min.pr <- min( dim(X)[2], dim(Y)[2])
    MX0 <- iniCCA(X, Y, u=4, num.d=min.pr)
    ini.X <- X%*%MX0
    ######## data(nutrimouse) ########
    data(nutrimouse)
    Y<-as.matrix(nutrimouse$lipid)
    X<-as.matrix(nutrimouse$gene)
    MX0 <- iniCCA(X, Y, u=4, num.d=4)
    MY0 <- iniCCA(Y, X, u=5, num.d=4)
    ini.X <- X %*% MX0
    ini.Y <- Y %*% MY0
```

 nutrimouse Nutrimouse dataset

Description

The nutrimouse dataset comes from a nutrition study in the mouse. It was provided by Pascal Martin from the Toxicology and Pharmacology Laboratory (French National Institute for Agronomic Research).

Usage

data(nutrimouse)

Format

gene: data frame $(40 * 120)$ with numerical variables
lipid: data frame $(40 * 21)$ with numerical variables
diet: factor vector (40)
genotype: factor vector (40)

Details

Two sets of variables were measured on 40 mice:
expressions of 120 genes potentially involved in nutritional problems.
concentrations of 21 hepatic fatty acids: The 40 mice were distributed in a 2-factors experimental design (4 replicates).
Genotype (2-levels factor): wild-type and PPARalpha -/-
Diet (5-levels factor): Oils used for experimental diets preparation were corn and colza oils (50/50) for a reference diet (REF), hydrogenated coconut oil for a saturated fatty acid diet (COC), sunflower oil for an Omega6 fatty acid-rich diet (SUN), linseed oil for an Omega3-rich diet (LIN) and corn/colza/enriched fish oils for the FISH diet (43/43/14).

References

P. Martin, H. Guillou, F. Lasserre, S. D??jean, A. Lan, J-M. Pascussi, M. San Cristobal, P. Legrand, P. Besse, T. Pineau (2007) Novel aspects of PPARalpha-mediated regulation of lipid and xenobiotic metabolism revealed through a nutrigenomic study. Hepatology, 45, 767???777

Examples

data(nutrimouse)
boxplot(nutrimouse\$lipid)

```
plot.seedCCA
```

Plotting class "seedCCA" depending on the value of type

Description

The function is for plotting class "seedCCA". Depending on subclass defined by the value of type, its resulting plot is different.

Usage

\#\# S3 method for class 'seedCCA'
plot (x, ref=90, eps=0.01, ...)

Arguments

x
ref
eps numeric, a value to terminate projections. It must be chosen between 0 and 1. The default is equal to 0.01 . It works only for subclass "seedpls".
... arguments passed to the plot.method

Details

subclass "finalCCA": the function makes a plot for percents of cumulative canonical correlations.
subclass "seedpls": the function returns a proper number of projections and plot of the projection increment against the number of projections. A proper number of projections is indicated with a blue-color vertical bar in the plot. Only for subclass "seedpls", the output is retured. See Value part. subclass "seedols": No plotting
subclass "selectu": the function makes a plot for increment of iterative projections by the output of subclass "selectu".

Value

proper.u proper value of the number of projections
$\mathrm{nFu} \quad$ incrments $(\mathrm{n} * \mathrm{Fu})$ of the iterative projection.
$u \quad$ the maximum number of projections from "seedpls" object
eps a value for terminating the projection. The default value is equal to 0.01 .

Examples

```
######## data(cookie) ########
data(cookie)
myseq<-seq(141,651,by=2)
X<-as.matrix(cookie[-c(23,61),myseq])
Y<-as.matrix(cookie[-c(23,61),701:704])
fit.cca <- seedCCA(X[,1:4],Y[,1:4],type="cca")
fit.seed1 <- seedCCA(X,Y, type="seed1")
fit.pls1 <- seedCCA(X,Y[,1],type="pls")
fit.selu <- selectu(X,Y, type="seed2")
plot(fit.cca)
plot(fit.seed1, ref=95)
plot(fit.pls1)
plot(fit.pls1, eps=0.00001)
plot(fit.selu)
``` spect to Sx inner-product

\section*{Description}

The function reuturns a projection of a seed matrix on to the column subspace of \(M\) with respect to Sx inner-product.

\section*{Usage}

Pm(M, Sx, seed)

\section*{Arguments}
\begin{tabular}{ll}
\(M\) & numeric matrix \(\left(p^{*} k\right)\), a basis matrix of the column space of \(M\) \\
\(S x\) & a inner-product matrix \\
seed & seed matrix
\end{tabular}

\section*{Examples}
```

data(cookie)
myseq<-seq(141,651,by=2)
X<-as.matrix(cookie[-c(23,61),myseq])
Y<-as.matrix(cookie[-c(23,61),701:704])

## using cov(X,Y) as a seed matrix

seed <- cov(X,Y)
col.num <- dim(seed)[2]
M <- iniCCA(X, Y, u=4, num.d=col.num)
Sx <- cov(X)
Pm(M, Sx, seed)

## using the first 2 largest eigenvectors of }\operatorname{cov}(X,Y)\mathrm{ as a seed matrix

seed2 <- svd(cov(X,Y))\$u[,1:2]
M2 <- iniCCA(X, Y, u=4, num.d=2)
Pm(M, Sx, seed2)

```
print.seedCCA basic function for printing class "seedCCA"

\section*{Description}

The function controls to print class "seedCCA". The function prints the estimated coefficents, if they exist. For subclass "finalCCA", canonical correlations are additionally reported. For subsclass "selectu", increments, suggested number of projections and the values of type and eps are reported.

\section*{Usage}
```


## S3 method for class 'seedCCA'

print(x,...)

```

\section*{Arguments}
\(x \quad\) The name of an object of class "seedCCA"
\(\ldots \quad\) arguments passed to the print.method

\section*{Examples}
```

\#\#\#\#\#\#\#\# data(cookie) \#\#\#\#\#\#\#\#
data(cookie)
myseq<-seq(141,651,by=2)
X<-as.matrix(cookie[-c(23,61),myseq])
Y<-as.matrix(cookie[-c(23,61),701:704])
fit.seed2 <- seedCCA(X,Y)
fit.seed2
print(fit.seed2)

```
seedCCA Seeded Canonical correlation analysis

\section*{Description}

The function seedCCA is mainly for implementing seeded canonical correlation analysis proposed by Im et al. (2015). The function conducts the following four methods, depending on the value of type. The option type has one of c("cca", "seed1", "seed2", "pls").

\section*{Usage}
seedCCA \((X, Y\), type="seed2", \(u x=N U L L, u y=N U L L, u=10, e p s=0.01\), cut=0. \(9, d=N U L L, A S=T R U E\), scale=FALSE)

\section*{Arguments}
\(X\)
\(Y \quad\) numeric vector or matrix \((\mathrm{n} * \mathrm{r})\), the second set of variables
type character, a choice of methods among c("cca", "seed1", "seed2", "pls"). The default is "seed2".
ux numeric, maximum number of projections for \(X\). The default is NULL. If this is not NULL, it surpasses the option \(u\) with type="seed1" and p>r. For type="seed2", if ux and uy are not NULL, they surpass u.
uy numeric, maximum number of projections for Y. The default is NULL. If this is not NULL, it surpasses the option u with type="seed1" and p<r. For type="seed2", if ux and uy are not NULL, they surpass \(u\).
numeric, maximum number of projections. The default is 10 . This is used for type="seed1", type="seed2" and tyepe="pls".
u
eps
cut
d

AS
scale
numeric, the criteria to terminate iterative projections. The default is 0.01 . If increment of projections is less than eps, then the iterative projection is terminated.
numeric, between 0 and 1 . The default is 0.9 . If d is NULL, cut is used for automatic replacements of \(\operatorname{cov}(\mathrm{X}, \mathrm{Y})\) and \(\operatorname{cov}(\mathrm{Y}, \mathrm{X})\) with their eigenvectors, depending on the value of cut. So, if any value of \(d\) is given, cut is not effective. \(\operatorname{cov}(\mathrm{X}, \mathrm{Y})\) and \(\operatorname{cov}(\mathrm{Y}, \mathrm{X})\) are replaced with their largest eigenvectors, whose cumulative eigenvalue proportion is bigger than the value of cut. This only works for type="seed2".
numeric, the user-selected number of largest eigenvectors of \(\operatorname{cov}(\mathrm{X}, \mathrm{Y})\) and \(\operatorname{cov}(\mathrm{Y}, \mathrm{X})\). The default is NULL. This only works for type="seed2". If any value of \(d\) is given, cut does not work.
logical, status of automatic stop of projections. The default is TRUE. If TRUE, the iterative projection is automatically stopped, when the terminaion condition eps is satisfied. IfAS=FALSE, the iterative projections are stopped at the value of u.
logical. scaling predictors to have zero mean and one standard deviation. The default is FALSE. If scale=TRUE, each predictor is scaled with mean 0 and variance 1 for partial least squares. This option works only for type="pls".

\section*{Details}

Let p and r stand for the numbers of variables in the two sets and n stands for the sample size. The option of type=" cca" can work only when \(\max (\mathrm{p}, \mathrm{r})<\mathrm{n}\), and seedCCA conducts standard canonical correlation analysis (Johnson and Wichern, 2007). If type="cca" is given and either p or r is equal to one, ordinary least squares (OLS) is done instead of canonical correlation analysis. If \(\max (\mathrm{p}, \mathrm{r})>=\) \(n\), either type="seed1" or type="seed2" has to be chosen. This is the main purpose of seedCCA. If type="seed1", only one set of variables, saying \(X\) with \(p\) for convenience, to have more variables than the other, saying Y with r , is initially reduced by the iterative projection approach (Cook et al. 2007). And then, the canonical correlation analysis of the initially-reduced \(X\) and the original \(Y\) is finalized. If type="seed2", both \(X\) and \(Y\) are initially reduced. And then, the canonical correlation analysis of the two initially-reduced \(X\) and \(Y\) are finalzed. If type="pls", partial least squares (PLS) is done. If type="pls" is given, the first set of variables in seedCCA is predictors and the second set is response. This matters The response can be multivariate. Depeding on the value of type, the resulted subclass by seedCCA are different.:
type="cca": subclass "finalCCA" (\(p>2 ; r>2 ; p, r<n\))
type="cca": subclass "seedols" (either p or \(r\) is equal to 1 .)
type="seed1" and type="seed2": subclass "finalCCA" (max(p,r)>n)
type="pls": subclass "seedpls" (\(\mathrm{p}>\mathrm{n}\) and \(\mathrm{r}<\mathrm{n}\))
So, plot (object) will result in different figure depending on the object.
The order of the values depending on type is follows.:
```

type="cca": standard CCA (max(p,r)<n, min(p,r)>1) / "finalCCA" subclass
type="cca": ordinary least squares (max(p,r)<n, min(p,r)=1) / "seedols" subclass

```
```

type="seed1": seeded CCA with case1 (max(p,r)>n and p>r) / "finalCCA" subclass
type="seed1": seeded CCA with case1 (max(p,r)>n and p<=r) / "finalCCA" subclass
type="seed2": seeded CCA with case2 (max(p,r)>n) / "finalCCA" subclass
type="pls": partial least squares (p>n and r<n) / "seedpls" subclass

```

\section*{Value}
\begin{tabular}{|c|c|}
\hline type="cca" & Values with selecting type="cca": standard CCA \((\max (\mathrm{p}, \mathrm{r})<\mathrm{n}, \min (\mathrm{p}, \mathrm{r})>1) /\) "finalCCA" subclass \\
\hline cor & canonical correlations \\
\hline xcoef & the estimated canonical coefficients for X \\
\hline ycoef & the estimated canonical coefficients for Y \\
\hline Xscores & the estimated canonical variates for X \\
\hline Yscores & the estimated canonical variates for Y \\
\hline type="cca" & Values with selecting type="cca": ordinary least squares \((\max (\mathrm{p}, \mathrm{r})<\mathrm{n}, \min (\mathrm{p}, \mathrm{r})=1)\) / "seedols" subclass \\
\hline coef & the estimated ordinary least squares coefficients \\
\hline \(X\) & X , the first set \\
\hline Y & Y, the second set \\
\hline type="seed1" & Values with selecting type="seed1": seeded CCA with case1 (\(\max (\mathrm{p}, \mathrm{r})>\mathrm{n}\) and \(\mathrm{p}>\mathrm{r}\)) / "finalCCA" subclass \\
\hline cor & canonical correlations \\
\hline xcoef & the estimated canonical coefficients for X \\
\hline ycoef & the estimated canonical coefficients for Y \\
\hline proper.u & a suggested proper number of projections for X \\
\hline initialMX0 & the initialized canonical coefficient matrices of X \\
\hline newX & initially-reduced X \\
\hline Y & the original Y \\
\hline Xscores & the estimated canonical variates for X \\
\hline Yscores & the estimated canonical variates for Y \\
\hline type="seed1" & Values with selecting type="seed1": seeded CCA with case 1 (\(\max (\mathrm{p}, \mathrm{r})>\mathrm{n}\) and \(\mathrm{p}<=\mathrm{r}\)) / "finalCCA" subclass) \\
\hline cor & canonical correlations \\
\hline \(x c o e f\) & the estimated canonical coefficients for X \\
\hline ycoef & the estimated canonical coefficients for Y \\
\hline proper.u & a suggested proper number of projections for Y \\
\hline X & the original X \\
\hline initialMY0 & the initialized canonical coefficient matrices of Y \\
\hline new Y & initially-reduced Y \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Xscores & the estimated canonical variates for X \\
\hline Yscores & the estimated canonical variates for Y \\
\hline type="seed2" & Values with selecting type="seed2": seeded CCA with case2 \((\max (\mathrm{p}, \mathrm{r})>\mathrm{n}) /\) "finalCCA" subclass \\
\hline cor & canonical correlations \\
\hline xcoef & the estimated canonical coefficients for X \\
\hline ycoef & the estimated canonical coefficients for Y \\
\hline proper.ux & a suggested proper number of projections for X \\
\hline proper.uy & a suggested proper number of projections for Y \\
\hline d & suggested number of eigenvectors of \(\operatorname{cov}(\mathrm{X}, \mathrm{Y})\) \\
\hline initialMX0 & the initialized canonical coefficient matrices of X \\
\hline initialMY0 & the initialized canonical coefficient matrices of Y \\
\hline newX & initially-reduced X \\
\hline new Y & initially-reduced Y \\
\hline Xscores & the estimated canonical variates for X \\
\hline Yscores & the estimated canonical variates for Y \\
\hline type="pls" & Values with selecting type="pls":: partial least squares (\(\mathrm{p}>\mathrm{n}\) and \(\mathrm{r}<\mathrm{n}\)) / "seedpls" subclass \\
\hline coef & the estimated coefficients for each iterative projection upto u \\
\hline u & the maximum number of projections \\
\hline X & predictors \\
\hline Y & response \\
\hline scale & status of scaling predictors \\
\hline cases & the number of observations \\
\hline
\end{tabular}

\section*{References}
R. D. Cook, B. Li and F. Chiaromonte. Dimension reduction in regression without matrix inversion. Biometrika 2007; 94: 569-584.
Y. Im, H. Gang and JK. Yoo. High-throughput data dimension reduction via seeded canonical correlation analysis, J. Chemometrics 2015; 29: 193-199.
R. A. Johnson and D. W. Wichern. Applied Multivariate Statistical Analysis. Pearson Prentice Hall: New Jersey, USA; 6 edition. 2007; 539-574.
K. Lee and JK. Yoo. Canonical correlation analysis through linear modeling, AUST. NZ. J. STAT. 2014; 56: 59-72.

\section*{Examples}
```


###### data(cookie)

data(cookie)
myseq<-seq(141,651,by=2)
X<-as.matrix(cookie[-c(23,61),myseq])
Y<-as.matrix(cookie[-c(23,61), 701:704])
dim(X);\operatorname{dim}(Y)

## standard CCA

fit.cca <-seedCCA(X[,1:4], Y, type="cca") \#\# standard canonical correlation analysis is done.
plot(fit.cca)

## ordinary least squares

fit.ols1 <-seedCCA(X[,1:4], Y[,1], type="cca") \#\# ordinary least squares is done, because r=1.
fit.ols2 <-seedCCA(Y[,1], X[,1:4], type="cca") \#\# ordinary least squares is done, because p=1.

## seeded CCA with case 1

fit.seed1 <- seedCCA(X, Y, type="seed1") \#\# suggested proper value of u is equal to 3.
fit.seed1.ux <- seedCCA(X, Y, ux=6, type="seed1") \#\# iterative projections done 6 times.
fit.seed1.uy <- seedCCA(Y, X, uy=6, type="seed1", AS=FALSE) \#\# projections not done until uy=6.
plot(fit.seed1)

## partial least squares

fit.pls1 <- seedCCA(X, Y[,1], type="pls")
fit.pls.m <- seedCCA(X, Y, type="pls") \#\# multi-dimensional response
par(mfrow=c(1,2))
plot(fit.pls1); plot(fit.pls.m)

```
\#\#\#\#\#\#\#\# data(nutrimouse) \#\#\#\#\#\#\#\#
data(nutrimouse)
X<-as.matrix(nutrimouse\$gene)
\(Y<-a s . m a t r i x(n u t r i m o u s e \$ l i p i d)\)
\(\operatorname{dim}(X) ; \operatorname{dim}(Y)\)
\#\# seeded CCA with case 2
fit. seed2 <- seedCCA(X, Y, type="seed2") \#\# d not specified, so cut=0.9 (default) used.
fit. seed2.99 <- seedCCA(X, Y, type="seed2", cut=0.99) \#\# cut=0.99 used.
fit. seed2.d3 <- seedCCA(X, Y, type="seed2", d=3) \#\# d is specified with 3.
\#\# ux and uy specified, so proper values not suggested.
fit. seed2.uxuy <- seedCCA(X, Y, type="seed2", ux=10, uy=10)
plot(fit.seed2)
seeding
increments of iterative projections

\section*{Description}

Returns increments (nFu) of iterative projections of a seed matrix onto a covariance matrix \(u\) times.)

\section*{Usage}
seeding(seed, covx, \(n, \quad u=10)\)

\section*{Arguments}
\begin{tabular}{ll}
seed & numeric matrix \((p * d)\), a seed matrix \\
covx & numeric matrix \((p * p)\), covariance matrix of \(X\) \\
\(n\) & numeric, sample sizes \\
\(u\) & numeric, maximum number of projections
\end{tabular}

\section*{Value}
\(\mathrm{nFu} \quad \mathrm{n}\) *Fu values

\section*{Examples}
```

data(cookie)
myseq<-seq(141,651,by=2)
X<-as.matrix(cookie[-c(23,61),myseq])
Y<-as.matrix(cookie[-c(23,61),701:704])
seed <- cov(X,Y)
covx <- cov(X)
seeding(seed, covx, n=dim(X)[1], u=4)

```

\section*{Description}

Returns increments (nFu) of iterative projections of a seed matrix onto a covariance matrix upto k, which properly chosen by satisfying the terminating condition eps (eps can be selected by users).

\section*{Usage}
seeding.auto.stop(seed, covx, n, u.max=30, eps=0.01)

\section*{Arguments}
\begin{tabular}{ll}
seed & numeric matrix \((\mathrm{p} * \mathrm{~d})\), a seed matrix \\
covx & numeric matrix \((\mathrm{p} * \mathrm{p})\), covariance matrix of \(X\) \\
n & numeric, sample sizes \\
u.max & numeric, maximum number of projection. The default value is equal to 30. \\
eps & numeric, a value of a condition for terminating the projection. The default value \\
& is equal to 0.01.
\end{tabular}
seedols

\section*{Value}
\[
\mathrm{nFu} \quad \mathrm{n} * \mathrm{Fu} \text { values }
\]
\(u \quad\) the number of projection properly chosen by satisfying the terminating condition eps

\section*{Examples}
```

data(cookie)
myseq<-seq(141,651,by=2)
X<-as.matrix(cookie[-c(23,61),myseq])
Y<-as.matrix(cookie[-c(23,61),701:704])
seed <- cov(X,Y)
covX <- cov(X)
seeding.auto.stop(seed, covx, n=dim(X)[1])
seeding.auto.stop(seed, covx, n=dim(X)[1], u.max=20, eps=0.001)

```
```

seedols
Ordinary least squares

```

\section*{Description}

Returns ordinary least squares estimates. And, the function results in subclass "seedols". For this function to work, either X or Y has to be one-dimensional. It is not necessary that X and Y should be predictors and response, respectively. Regardless of the position in the arguments, the onedimensional and multi-dimensional variables become response and predictors, respectively.

\section*{Usage}
seedols(X, Y)

\section*{Arguments}
\(X \quad\) numeric vector or matrix, a first set of variables
\(Y \quad\) numeric vector or matrix, a second set of variables

\section*{Value}
coef the estimated coefficients for each iterative projection upto u
X
\(X\), the first set

Y
Y , the second set

\section*{Examples}
```

\#\#\#\#\#\#\#\# data(cookie) \#\#\#\#\#\#\#\#
data(cookie)
myseq<-seq(141,651,by=2)
X<-as.matrix(cookie[-c(23,61),myseq])
Y<-as.matrix(cookie[-c(23,61),701:704])
ols1 <- seedols(X[,1:4],Y[,1])
ols2 <- seedols(Y[,1],X[,1:4])

## ols1 and ols2 are the same results.

```
seedpls Partial least squares through iterative projections

\section*{Description}

Returns partial least squares estimates through iterative projections. And, the function results in subclass "seedpls".

\section*{Usage}
```

    seedpls(X, Y, u=5, scale=FALSE)
    ```

\section*{Arguments}
\begin{tabular}{ll}
\(X\) & numeric matrix \((\mathrm{n} * \mathrm{p})\), a set of predictors \\
Y & numeric vector or matrix \((\mathrm{n} * \mathrm{r})\), responses (it can be multi-dimensional) \\
\(u\) & numeric, the number of projections. The default is 5. \\
scale & \begin{tabular}{l}
logical, FALSE is default. If TRUE, each predictor is standardized with mean 0 \\
and variance 1
\end{tabular}
\end{tabular}

\section*{Value}
coef the estimated coefficients for each iterative projection upto \(u\)
u the maximum number of projections
X Predictors
\(Y \quad\) Response
scale status of scaling predictors
```

Examples
\#\#\#\#\#\#\#\# data(cookie) \#\#\#\#\#\#\#\#
data(cookie)
myseq<-seq(141,651,by=2)
X<-as.matrix(cookie[-c(23,61),myseq])
Y<-as.matrix(cookie[-c(23,61),701:704])
fit.pls1 <- seedpls(X,Y[,1]) \#\# one-dimensional response
fit.pls2 <- seedpls(X,Y, u=6, scale=TRUE) \#\# four-dimensional response

```
selectu Function that guides a selection of the terminating index when using seedCCA function

\section*{Description}

The usage of selectu depends on one of its arguments, type. If tyep="seed1", the \(n * F_{-} u\) is computed for a higher dimension one of X and Y and a proper number of prjections is reported. For example, suppose that the dimension of \(X\) is higher than \(Y\). Then selectu(\(X, Y\), type="case1") and selectu(\(Y, X, u=5\), type="case1") gives the same results, and it is for \(X\). If type="seed2", \(n * F _u\) is computed for \(X\) and \(Y\) and proper numbers of projections for \(X\) and \(Y\) are reported. And, For type="seed2", num.d must be specified. Its defualt value is 2 . The argument eps is a terminating condition for stopping projections. The projection is stopped, when the increment is less than the value of eps. The argument auto. stop=TRUE has the function automatically stopped as soon as the increment is less than the value of eps. If not, the increments are computed until the value of \(u\).max is reached. The function selectu results in subclass "selectu".

\section*{Usage}
```

selectu(X, Y, type="seed2", u.max=30, auto.stop=TRUE, num.d=2, eps=0.01)

```

\section*{Arguments}
\begin{tabular}{|c|c|}
\hline \(X\) & numeric matrix (\(\mathrm{n} * \mathrm{p}\)), the first set of variables \\
\hline Y & numeric matrix (\(\mathrm{n} * \mathrm{r}\)), the second set of variables \\
\hline type & character, the default is "seed2". "seed1" is for the first case of Seeded CCA (One set of variable is initially-reduced). "seed2" is for the second case of Seeded CCA (Two sets of variables are initially reduced). \\
\hline u. max & numeric, \(t\) he maximum number of \(u\). The default is equal to 30 . \\
\hline auto.stop & logical, The default value is TRUE. If TRUE, the iterative projection is automatically stopped, when the terminaion condition eps is satisfied. If FALSE, the iterative projections are stopped at the value of u.max. \\
\hline num.d & numeric, the number of the "num.d" largest eigenvectors of cov(first.set, second.set), if case1=FALSE. The default value is equal to 2 . This option works only for type="seed2". \\
\hline eps & numeric, the default value is equal to 0.01 . A value for terminating the projection. \\
\hline
\end{tabular}

\section*{Details}

The order of the values depending on type is follows:
```

type="seed1"
type="seed2"

```

\section*{Value}
\begin{tabular}{|c|c|}
\hline type="seed1" & Values with selecting type="seed1": \\
\hline nFu & incrments (\(\mathrm{n} * \mathrm{Fu}\)) of the iterative projection for initally reduction one set of variable. \\
\hline proper.u & proper value of the number of projections for X \\
\hline type & types of seeded CCA \\
\hline eps & a value for terminating the projection. The default value is equal to 0.01 . \\
\hline type="seed2" & Values with selecting type="seed2": \\
\hline nFu.x & incrments (\(\mathrm{n} * \mathrm{Fu}\)) of the iterative projection for initially reducing X . \\
\hline nFu.y & incrments (\(\mathrm{n} * \mathrm{Fu}\)) of the iterative projection for initially reducing Y. \\
\hline proper.ux & proper value of the number of projections for X \\
\hline proper.uy & proper value of the number of projections for Y \\
\hline type & types of seeded CCA \\
\hline eps & a value for terminating the projection. The default value is equal to 0.01 . \\
\hline
\end{tabular}

\section*{Examples}
```


###### data(cookie)

data(cookie)
myseq<-seq(141,651,by=2)
X<-as.matrix(cookie[-c(23,61),myseq])
Y<-as.matrix(cookie[-c(23,61),701:704])
selectu(X, Y, type="seed1")
selectu(X, Y, type="seed1", auto.stop=FALSE)
selectu(X, Y, type="seed2", eps=0.001, num.d=3)
selectu(X, Y, type="seed2", auto.stop=FALSE)

```
\#\#\#\#\#\#\#\# data(nutrimouse) \#\#\#\#\#\#\#\#
data(nutrimouse)
\(\mathrm{Y}<-\) as.matrix (nutrimouse\$lipid)
\(X<-\) as.matrix (nutrimouse\$gene)
selectu(X, Y, type="seed2", num.d=4)
selectu(X, Y, type="seed2", num.d=4, eps=0.001)
selectu(X, Y, type="seed2", auto.stop=FALSE, num.d=4, eps=0.001)

\section*{Index}
```

coef.seedCCA, 2
cookie, 3
covplot,4
finalCCA,5
fitted.seedCCA,6
iniCCA, 6
nutrimouse, }
plot.seedCCA, }
Pm, 10
print.seedCCA,10
seedCCA, 11
seeding, 15
seeding.auto.stop, 16
seedols,17
seedpls,18
selectu, 19

```
```

