
Package ‘optimization’
October 14, 2022

Type Package

Title Flexible Optimization of Complex Loss Functions with State and
Parameter Space Constraints

Version 1.0-9

Description Flexible optimizer with numerous input specifications for detailed
parameterisation. Designed for complex loss functions with state and
parameter space constraints. Visualization tools for validation and analysis
of the convergence are included.

License GPL (>= 2)

Depends R (>= 3.2.0), Rcpp (>= 0.12.12)

Imports colorspace

LinkingTo Rcpp

RoxygenNote 7.1.1

Suggests R.rsp

VignetteBuilder R.rsp

URL https://github.com/kaihusmann/optimization

BugReports https://github.com/kaihusmann/optimization/issues

Encoding UTF-8

NeedsCompilation yes

Author Kai Husmann [aut, cre],
Alexander Lange [aut],
Nordwestdeutsche Forstliche Versuchsanstalt (NW-FVA) [cph, fnd]

Maintainer Kai Husmann <kai.husmann@uni-goettingen.de>

Repository CRAN

Date/Publication 2022-02-15 14:00:02 UTC

1

https://github.com/kaihusmann/optimization
https://github.com/kaihusmann/optimization/issues

2 optimization-package

R topics documented:
optimization-package . 2
optim_nm . 3
optim_sa . 6
plot.optim_nmsa . 9

Index 11

optimization-package Flexible Optimization of Complex Loss Functions with State and Pa-
rameter Space Constraints

Description

Flexible optimizer with numerous input specifications for detailed parameterisation. Designed for
complex loss functions with state and parameter space constraints. Visualization tools for validation
and analysis of the convergence are included.

Details

Package: optimization Type: Package Version: 1.0-6 Date: 2017-09-23 License: GPL-2

Author(s)

NA

Maintainer: NA

References

Corana, A., Marchesi, M., Martini, C. and Ridella, S. (1987), Minimizing Multimodal Functions
of Continuous Variables with the ’Simulated Annealing’ Algorithm. ACM Transactions on Mathe-
matical Software, 13(3):262-280.

Gao, F. and Han, L. (2012). Implementing the nelder-mead simplex algorithm with adaptive pa-
rameters. Computational Optimization and Applications, 51(1):259 277.

Geiger, C. and Kanzow, C. (1999). Das nelder-mead-verfahren. Numerische Verfahren zur Loesung
unregestrierter Optimierungsaufgaben.

Kirkpatrick, S., Gelatt, C. D. and Vecchi, M. P. (1983). Optimization by Simulated Annealing.
Science, 220(4598): 671-680.

Nelder, J. and Mead, R. (1965). A simplex method for function minimization. Computer Journal,
7(4).

Pronzato, L., Walter, E., Venot, A. and Lebruchec, J.-F. (1984). A general-purpose global optimizer:
Implementation and applications. Mathematics and Computers in Simulation, 26(5):412-422.

See Also

optim_nm, optim_sa, optim, plot

optim_nm 3

Examples

hi <- function(x){(x[1]**2 + x[2] - 11)**2 + (x[1] + x[2]**2 -7)**2}
optim_nm(fun = hi, k = 2)
optim_sa(fun = hi, start = c(runif(2, min = -1, max = 1)),

trace = FALSE,
lower = c(-4, -4),
upper = c(4, 4),
control = list(dyn_rf = FALSE,
rf = 1.2,
t0 = 10,
nlimit = 100,
r = 0.6,
t_min = 0.1

)
)

optim_nm Optimization with Nelder-Mead

Description

This function contains a direct search algorithm, to minimize or maximize an objective function
with respect to their input parameters.

Usage

optim_nm(fun, k = 0, start, maximum = FALSE, trace = FALSE,
alpha = 1, beta = 2, gamma = 1/2, delta = 1/2,
tol = 0.00001, exit = 500, edge = 1)

Arguments

fun Function to minimize or maximize. It should return a single scalar value.

k Number of parameters of the objective function.

start Optional vector with starting values. Number of values must be equal to k. The
initial simplex is constructed around this start vector.

maximum Logical. The default is FALSE.

trace Logical. If TRUE, interim results are stored. Necessary for the plot function.
Default is FALSE.

alpha A positive scalar which indicates the size of the reflected simplex. The value 1
leads to a reflected simplex of the same size as the former iteration.

beta A positive scalar which indicates the size of the expended simplex. It is usually
twice as high as alpha. It must be higher than alpha.

gamma A positive scalar which indicates the size of either the outside contracted simplex
or inside contracted simplex. It is usually half as high as alpha. It must be
smaller than alpha.

4 optim_nm

delta A positive scalar which indicates the size of the shrinked simplex. It is usually
half as high as alpha. It must be smaller than alpha.

tol A positive scalar describing the tolerance at which the distances in between the
function responses of the simplex vertices are close enough to zero to terminate
the algorithm.

exit A positive scalar giving the maximum number of iterations the algorithm is al-
lowed to take. It is used to prevent infinite loops. In case of optimizing functions
with higher dimensions it is quite likely that the algorithm needs more than 500
iterations. The value should therefore be adjusted to the specific optimization
problem.

edge A positive scalar providing the edge length of the initial simplex. It is useful to
adjust the edge length if the initial guess is close to the global optimum or if the
parameter space of the loss function is relatively small.

Details

The Nelder-Mead method is a comparatively simple heuristic optimization algorithm. It is, How-
ever, useful for relatively simple optimization problems without many local minima and low di-
mensions(n < 10). Nevertheless, the speed and accuracy are rather useful for simple problems.
Moreover, the Nelder-Mead is able to optimize functions without derivatives. The handling of the
optimization function is quite easy, because there are only few parameters to adjust.

Value

The output is a nmsa_optim object with following entries:

par Function parameters after optimization.

function_value Function response after optimization.

trace Matrix with interim results. NULL if trace was not activated.

fun The loss function.

start The initial function parameters.

lower The lower boundaries of the function parameters.

upper The upper boundaries of the function parameters.

control The number of parameters and iterations of the algorithm.

Author(s)

Alexander Lange

References

Gao, F. and Han, L. (2012). Implementing the nelder-mead simplex algorithm with adaptive pa-
rameters. Computational Optimization and Applications, 51(1):259 277.

Geiger, C. and Kanzow, C. (1999). Das Nelder-Mead-Verfahren. Numerische Verfahren zur Loe-
sung unregestrierter Optimierungsaufgaben.

Nelder, J. and Mead, R. (1965). A simplex method for function minimization. Computer Journal,
7(4).

optim_nm 5

See Also

optim_sa, optim, plot.optim_nmsa

Examples

Rosenbrock function
minimum at f(1,1) = 0

B <- function(x){
100*(x[2]-x[1]^2)^2+(1-x[1])^2

}

Minimization with an initial guess at c(-2.048, 2.048)
optim_nm(B, start = c(-2.048, 2.048))

Himmelblau's function
minimum at f(3,2) = 0
f(-2.805, -3.1313) = 0
f(-3.779, -3.283) = 0
#f(3.5844, -1.848) = 0

H <- function(x){
(x[1]^2+x[2]-11)^2+(x[1]+x[2]^2-7)^2

}

Minimization with defined number of parameters
optim_nm(fun = H, k = 2)

Colville function with 4 parameters
co <- function(x){

x1 <- x[1]
x2 <- x[2]
x3 <- x[3]
x4 <- x[4]

term1 <- 100 * (x1^2 - x2)^2
term2 <- (x1 - 1)^2
term3 <- (x3-1)^2
term4 <- 90 * (x3^2 - x4)^2
term5 <- 10.1 * ((x2 - 1)^2 + (x4 - 1)^2)
term6 <- 19.8 * (x2 - 1)*(x4-1)

y <- term1 + term2 + term3 + term4 + term5 + term6
}

optim_nm(co, k = 4)

Minimization with trace
Output <- optim_nm(H, k = 2, trace = TRUE)
plot(Output)
plot(Output, 'contour')

6 optim_sa

optim_sa Flexible Optimization with Simulated Annealing

Description

Random search optimization method with systematic component that searches the global optimum.
The loss function is allowed to be non-linear, non-differentiable and multimodal. Undefined re-
sponses are allowed as well.

Usage

optim_sa(fun, start, maximization = FALSE, trace = FALSE,
lower, upper, control = list())

Arguments

fun Loss function to be optimized. It must return a scalar value. The variables must
be assigned as a vector. See ’details’.

start Vector of initial values for the function variables. Must be of same length as
the variables vector of the loss function. The response of the initial variables
combination must be defined (NA or NaN responses are not allowed).

maximization Logical. Default is FALSE.

trace Logical. If TRUE, interim results are stored. Necessary for the plot function.
Default is FALSE.

lower Vector of lower boundaries for the function variables. Must be of same length
as the variables vector of the function.

upper Vector of upper boundaries for the function variables. Must be of same length
as the variables vector of the function.

control List with optional further arguments to modify the optimization specifically to
the loss function:

vf Function that determines the variation of the function variables for the next
iteration. The variation function is allowed to depend on the vector of vari-
ables of the current iteration, the vector of random factors rf and the tem-
perature of the current iteration. Default is a uniform distributed random
number with relative range rf.

rf Numeric vector. Random factor vector that determines the variation of the
random number of vf in relation to the dimension of the function variables
for the following iteration. Default is 1. If dyn_rf is enabled, the rf change
dynamically over time.

dyn_rf Logical. rf change dynamically over time to ensure increasing preci-
sion with increasing number of iterations. Default is TRUE, see ’details’.

t0 Numeric. Initial temperature. Default is 1000.
nlimit Integer. Maximum number of iterations of the inner loop. Default is

100.

optim_sa 7

r Numeric. Temperature reduction in the outer loop. Default is 0.6.
k Numeric. Constant for the Metropolis function. Default is 1.
t_min Numeric. Temperature where outer loop stops. Default is 0.1.
maxgood Integer. Break criterion to improve the algorithm performance. Max-

imum number of loss function improvements in the inner loop. Breaks the
inner loop. Default is 100.

stopac Integer. Break criterion to improve the algorithm performance. Max-
imum number of repetitions where the loss improvement is lower than
ac_acc. Breaks the inner loop. Default is 30.

ac_acc Numeric. Accuracy of the stopac break criterion in relation to the
response. Default is 1/10000 of the function value at initial variables com-
bination.

Details

Simulated Annealing is an optimization algorithm for solving complex functions that may have
several optima. The method is composed of a random and a systematic component. Basically,
it randomly modifies the variables combination n_limit times to compare their response values.
Depending on the temperature and the constant k, there is also a likelihood of choosing variables
combinations with worse response. There is thus a time-decreasing likelihood of leaving local
optima. The Simulated Annealing Optimization method is therefore advantageous for multimodal
functions. Undefined response values (NA) are allowed as well. This can be useful for loss functions
with variables restrictions. The high number of parameters allows a very flexible parameterization.
optim_sa is able to solve mathematical formulas as well as complex rule sets.

The performance therefore highly depends on the settings. It is indispensable to parameterize the
algorithm carefully. The control list is pre-parameterized for loss functions of medium complexity.
To improve the performance, the settings should be changed when solving relatively simple func-
tions (e. g. three dimensional multimodal functions). For complex functions the settings should be
changed to improve the accuracy. Most important parameters are nlimit, r and t0.

The dynamic rf adjustment depends on the number of loss function calls which are out of the
variables boundaries as well as the temperature of the current iteration. The obligatory decreasing
rf ensures a relatively wide search grid at the beginning of the optimization process that shrinks
over time. It thus automatically adjusts for the trade-off between range of the search grid and
accuracy. See Pronzato (1984) for more details. It is sometimes useful to disable the dynamic rf
changing when the most performant rf are known. As dyn_rf usually improves the performance
as well as the accuracy, the default is TRUE.

Value

The output is a nmsa_optim list object with following entries:

par Function variables after optimization.

function_value Loss function response after optimization.

trace Matrix with interim results. NULL if trace was not activated.

fun The loss function.

start The initial function variables.

8 optim_sa

lower The lower boundaries of the function variables.

upper The upper boundaries of the function variables.

control Control arguments, see ’details’.

Author(s)

Kai Husmann

References

Corana, A., Marchesi, M., Martini, C. and Ridella, S. (1987), Minimizing Multimodal Functions
of Continuous Variables with the ’Simulated Annealing’ Algorithm. ACM Transactions on Mathe-
matical Software, 13(3):262-280.

Kirkpatrick, S., Gelatt, C. D. and Vecchi, M. P. (1983). Optimization by Simulated Annealing.
Science, 220(4598):671-680.

Pronzato, L., Walter, E., Venot, A. and Lebruchec, J.-F. (1984). A general-purpose global optimizer:
Implementation and applications. Mathematics and Computers in Simulation, 26(5):412-422.

See Also

optim_nm, optim, plot.optim_nmsa

Examples

Rosenbrock function
minimum at f(1,1) = 0
ro <- function(x){

100*(x[2]-x[1]^2)^2+(1-x[1])^2
}

Random start values. Example arguments for the relatively simple Rosenbrock function.
ro_sa <- optim_sa(fun = ro,

start = c(runif(2, min = -1, max = 1)),
lower = c(-5, -5),
upper = c(5, 5),
trace = TRUE,
control = list(t0 = 100,

nlimit = 550,
t_min = 0.1,
dyn_rf = FALSE,
rf = 1,
r = 0.7

)
)

Visual inspection.
plot(ro_sa)
plot(ro_sa, type = "contour")

plot.optim_nmsa 9

Holder table function

4 minima at
#f(8.055, 9.665) = -19.2085
#f(-8.055, 9.665) = -19.2085
#f(8.055, -9.665) = -19.2085
#f(-8.055, -9.665) = -19.2085

ho <- function(x){
x1 <- x[1]
x2 <- x[2]

fact1 <- sin(x1) * cos(x2)
fact2 <- exp(abs(1 - sqrt(x1^2 + x2^2) / pi))
y <- -abs(fact1 * fact2)

}

Random start values. Example arguments for the relatively complex Holder table function.
optim_sa(fun = ho,

start = c(1, 1),
lower = c(-10, -10),
upper = c(10, 10),
trace = TRUE,
control = list(dyn_rf = FALSE,

rf = 1.6,
t0 = 10,
nlimit = 200,
r = 0.6,
t_min = 0.1

)
)

plot.optim_nmsa Plot an optim_nmsa Object

Description

Creates convergence or contour plots for visual inspection of the optimization result. Note that
’trace’ must be activated for this function.
In case of a bivariate optimization, the ’contour’ plot gives an overview of the parameter develop-
ment over time in the entire state space. This is useful for the evaluation of the algorithm settings
and therefore helps improving the performance. The development of the response can be visualized
via the ’convergence’ plot.

Usage

S3 method for class 'optim_nmsa'
plot(x, type = 'convergence', lower = NA, upper = NA, ...)

10 plot.optim_nmsa

Arguments

x Object of type ’optim_nmsa’ to be plotted. The ’trace’ entry must not be empty.

type Character string which determines the plot type. Either ’convergence’ or ’con-
tour’ is possible.

lower Vector containing the lower limits of the variables in the plot. Only useful for
’contour’ plots.

upper Vector containing the upper limits of the variables in the plot. Only useful for
’contour’ plots.

... Further arguments for the generic plot function.

Author(s)

Kai Husmann, Alexander Lange

See Also

optim_nm, optim_sa

Examples

S3 method for class 'optim_nlme'

Himmelblau's function
hi <- function(x){(x[1]**2 + x[2] - 11)**2 + (x[1] + x[2]**2 -7)**2}

out_nm <- optim_nm(hi, k = 2, trace = TRUE)
out_sa <- optim_sa(fun = hi, start = c(runif(2, min = -1, max = 1)),

trace = TRUE, lower = c(-4, -4) ,upper=c(4, 4),
control = list(t0 = 1000, nlimit = 1500,r = 0.8))

Examples for optimization results via 'Nelder-Mead' method.
plot(out_nm)
plot(out_nm, type = "contour", lower = c(-4, -4), upper = c(4, 4))

Examples for optimization results via 'Simulated Annealing' method.
plot(out_sa)
plot(out_sa, type = "contour")

Index

optim, 2, 5, 8
optim_nm, 2, 3, 8, 10
optim_sa, 2, 5, 6, 10
optimization-package, 2

plot, 2
plot.optim_nmsa, 5, 8, 9

11

	optimization-package
	optim_nm
	optim_sa
	plot.optim_nmsa
	Index

