Effortless multicollinearity management in data frames with both numeric and categorical variables for statistical and machine learning applications. The package simplifies multicollinearity analysis by combining four robust methods: 1) target encoding for categorical variables (Micci-Barreca, D. 2001 <doi:10.1145/507533.507538>); 2) automated feature prioritization to prevent key variable loss during filtering; 3) pairwise correlation for all variable combinations (numeric-numeric, numeric-categorical, categorical-categorical); and 4) fast computation of variance inflation factors.
Version: | 2.0.0 |
Depends: | R (≥ 4.0) |
Imports: | progressr, future.apply, mgcv, rpart, ranger |
Suggests: | future, testthat (≥ 3.0.0), spelling |
Published: | 2024-11-08 |
DOI: | 10.32614/CRAN.package.collinear |
Author: | Blas M. Benito [aut, cre, cph] |
Maintainer: | Blas M. Benito <blasbenito at gmail.com> |
BugReports: | https://github.com/blasbenito/collinear/issues |
License: | MIT + file LICENSE |
URL: | https://blasbenito.github.io/collinear/ |
NeedsCompilation: | no |
Language: | en-US |
Citation: | collinear citation info |
Materials: | README NEWS |
CRAN checks: | collinear results |
Reference manual: | collinear.pdf |
Package source: | collinear_2.0.0.tar.gz |
Windows binaries: | r-devel: collinear_1.1.1.zip, r-release: collinear_2.0.0.zip, r-oldrel: collinear_2.0.0.zip |
macOS binaries: | r-release (arm64): collinear_2.0.0.tgz, r-oldrel (arm64): collinear_2.0.0.tgz, r-release (x86_64): collinear_2.0.0.tgz, r-oldrel (x86_64): collinear_2.0.0.tgz |
Old sources: | collinear archive |
Please use the canonical form https://CRAN.R-project.org/package=collinear to link to this page.