
Package ‘FastKM’
October 12, 2022

Type Package

Title A Fast Multiple-Kernel Method Based on a Low-Rank Approximation

Version 1.1

Date 2022-06-05

Author Rachel Marceau, Wenbin Lu, Michele M. Sale, Bradford B. Worrall,
Stephen R. Williams, Fang-Chi Hsu, Jung-Ying Tzeng, and Shannon T. Holloway

Maintainer Shannon T. Holloway <shannon.t.holloway@gmail.com>

Description A computationally efficient and statistically rigorous fast
Kernel Machine method for multi-kernel analysis. The approach is based on
a low-rank approximation to the nuisance effect kernel matrices. The
algorithm is applicable to continuous, binary, and survival traits and
is implemented using the existing single-kernel analysis software 'SKAT'
and 'coxKM'. 'coxKM' can be obtained from
<https://github.com/lin-lab/coxKM>.

License GPL-2

Depends rARPACK, stats, methods

Suggests coxKM, SKAT, survival

NeedsCompilation no

Repository CRAN

Date/Publication 2022-06-07 12:00:22 UTC

R topics documented:
FastKM-package . 2
geno . 2
geno-class . 4
KITdesign . 5
KITkernel . 7
nongeno . 9
nongeno-class . 10

Index 11

1

https://github.com/lin-lab/coxKM

2 geno

FastKM-package A Fast Multiple-Kernel Method Based on a Low-Rank Approximation

Description

A computationally efficient and statistically rigorous fast Kernel Machine method for multi-kernel
analysis. The approach is based on a low-rank approximation to the nuisance effect kernel matrices.
The algorithm is applicable to continuous, dichotomous, and survival traits and is implemented
using the existing single-kernel analysis software ’SKAT’ or ’coxKM’.

Details

Package: FastKM
Type: Package
Version: 1.1
Date: 2022-06-05
License: GPL-2

Author(s)

Shannon T. Holloway, Rachel Marceau, Wenbin Lu, Michele M. Sale, Bradford B. Worrall, Stephen
R. Williams, Fang-Chi Hsu, and Jung-Ying Tzeng

Maintainer: Shannon T. Holloway <shannon.t.holloway@gmail.com>

References

Marceau, R., Lu, W., Holloway, S. T., Sale, M. M., Worrall, B. B., Williams, S. R., Hsu, F-C., and
Tzeng, J-Y. (2015). A Fast Multiple-Kernel Method with Applications to Detect Gene-Environment
Interaction. Genetic Epidemiology, 39, 456-468.

geno Create a geno Object.

Description

Creates an object of class geno containing a matrix of one-column-per-marker formated genotype
data, the type of kernel, and the weights to be used to create the kernel matrix. This function is used
to simplify the input structure of the call to KITdesign.

Usage

geno(mat, kernel = "linear", weights = NULL, inheritMode = NA)

geno 3

Arguments

mat Design matrix for genotype data in either one- or two-column-per-marker for-
mat. Object can be a vector, matrix, or data.frame. Missing values can be coded
as either 9 or NA.

kernel Character object indicating type of kernel. Must be one of ’ibs’, ’linear’, ’quadratic’.
For linear kernel, the constant is taken to be zero; for quadratic kernel, it is one.

weights Weights, if any, to be used in generating kernel. Object can be a vector or matrix.
If vector and kernel is not ibs, weights are converted to a diagonal matrix.

inheritMode For two-column-per-marker format, the inheritance mode to be used to convert
to one-column-per-marker format. Must be one of ’add’, ’dom’, ’rec’ indicating
additive, dominant, or recessive, respectively.

Details

There are two conventions for genotype data: one- and two-column-per-marker formats. Either
format can be used. If genotype data is in one-column format, inheritMode = NA. If genotype data
is in two-column format, inheritMode = add/dom/rec.

Non-integer imputed values can be provided. If it is determined that non-integer values are provided
and that the kernel was specified as ‘ibs,’ the kernel will be reset to ‘linear.’ In addition, if provided
in the two-column format, inheritMode will be set to ‘add.’

Value

Returns an object of class geno containing the one-column-per-marker genotype data, the weights
to be used in generating the kernel, and the type of kernel to be generated.

Author(s)

Shannon T. Holloway

See Also

nongeno, KITdesign

Examples

gdata <- matrix(sample(0:1,40,replace=TRUE,prob=c(0.9,0.1)),ncol=4L)

geno(mat = gdata, kernel = "ibs",
weights = NULL, inheritMode="add")

4 geno-class

geno-class Class "geno"

Description

Class contains all information needed to generate a kernel matrix for genotype data.

Objects from the Class

Objects can be created by calls of the form new("geno", ...).

Slots

mat: Object of class "matrix or NULL"; one-column-per-marker formatted genotype data.

kernel: Object of class "character"; type of kernel to generate.

weights: Object of class "matrix"; weights to be used when generating kernel matrix.

Methods

No methods defined with class "geno" in the signature.

Note

This class is used to simplify input and logic within the main program. New objects of this class
should be created only through function geno().

Author(s)

Shannon T. Holloway

See Also

geno, nongeno

Examples

showClass("geno")

KITdesign 5

KITdesign A Fast Multiple-Kernel Method Based on a Low-Rank Approximation
with Design Matrix Inputs

Description

A computationally efficient and statistically rigorous fast Kernel Machine method for multi-kernel
analysis. The approach is based on a low-rank approximation to the nuisance effect kernel matrices.
The algorithm is applicable to continuous, dichotomous, and survival traits and is implemented
using the existing single-kernel analysis software ’SKAT’ or ’coxKM’. This function accepts as
input objects of class geno and/or nongeno containing a design matrix, kernel type, and weights.

Usage

KITdesign(y, matA, matB, matC=NULL, x=NULL, trait=NULL, delta=NULL,
standardize=TRUE, ...)

Arguments

y a vector, matrix, or data.frame of traits. Must be a continuous, dichotomous, or
survival trait. Missing values must be coded as NA.

matA an object of class geno or non-geno that specifies the design matrix, weights,
and kernel type for matrix A.

matB an object of class geno or non-geno that specifies the design matrix, weights,
and kernel type for matrix B.

matC If provided, an object of class non-geno. It is the design matrix of the effect for
which the user is testing given the design matrices specified in matA and matB.
Missing values are coded as NA. If NULL, Akernel x Bkernel will be used.

x a vector, matrix, or data.frame. The design matrix of covariates that are not
included in either design matrix specified in matA or matB.

trait One of ’c’,’d’,’s’,NULL indicating the type of trait given in input y, where ’c’
= continuous, ’d’ = dichotomous, and ’s’ = survival. If NULL, the software
will deduce the trait type using the following logic: If input argument delta is
not NULL, assume survival. If y is an integer with only two unique values,
dichotomous. If y is not an integer or if y is an integer and there are more than
two unique values, continuous. Here, integer does not mean the R class but that
a numeric is equivalent to its integer truncation.

delta the status/event indicator in survival analyses. Usually, 0=alive, 1=dead; TRUE/FALSE
(TRUE=death); or 1/2 (2 = death). For continuous or dichotomous traits, delta
must be NULL.

standardize If TRUE, input x and all objects of class nongeno will be centered and scaled.

... Optional arguments to be passed to kernel machine methods and/or coxph.

6 KITdesign

Details

If missing values are provided in matA, matB, matC, y, or x, individuals with missing values in any
of these inputs will be removed from all calculations.

The function SKAT_Null_Model and SKAT of the ’SKAT’ R package are used to obtain p-values
for continuous and dichotomous traits. For survival traits, Surv and coxph of the ’survival’ package
and coxKM of the R package ’coxKM’ are used. The ellipsis in the call to KITdesign can be
used to adjust the default setting of the Kernel Machine methods and coxph. At the time of this
documentation, coxph and coxKM have an overlap in argument names, namely ’weights.’ If weights
are provided by user through the ellipsis, it is assumed that this refers to coxph.

At the time of writing this documentation, the R package ’coxKM’ is not available through the
CRAN repository, but can be obtained from <https://github.com/lin-lab/coxKM>. This package is
only required to be installed if survival traits are analyzed. Only version 0.3 and above of coxKM
can be used with this package.

The algorithm maintains the highest possible proportion of variability in both kernel matrices.

Value

A list is returned.

propA The proportion of variability retained in kernel of matA.
propB The proportion of variability retained in kernel of matB.
pValue The p-value as returned by function SKAT or coxKM.

Author(s)

Shannon T. Holloway, Rachel Marceau, Wenbin Lu, Michele M. Sale, Bradford B. Worrall, Stephen
R. Williams, Fang-Chi Hsu, and Jung-Ying Tzeng.

References

Marceau, R., Lu, W., Holloway, S. T., Sale, M. M., Worrall, B. B., Williams, S. R., Hsu, F-C.,
and Tzeng, J-Y. A Fast Multiple-Kernel Method with Applications to Detect Gene-Environment
Interaction. Genetic Epidemiology, 39, 456-468.

Examples

if(requireNamespace("SKAT", quietly=TRUE)) {

matA <- matrix(data = rnorm(100*20), nrow = 100, ncol = 20)
matB <- matrix(data = rnorm(100), nrow = 100, ncol = 1)

y <- rnorm(100)

KITdesign(y = y,
matA = nongeno(matA, kernel = "linear"),
matB = nongeno(matB, kernel = "linear"))

}

KITkernel 7

KITkernel A Fast Multiple-Kernel Method Based on a Low-Rank Approximation
with Kernel Inputs.

Description

A computationally efficient and statistically rigorous fast Kernel Machine method for multi-kernel
analysis. The approach is based on a low-rank approximation to the nuisance effect kernel matrices.
The algorithm is applicable to continuous, dichotomous, and survival traits and is implemented
using the existing single-kernel analysis software ’SKAT’ and/or ’coxKM’. This function accepts
as input kernel matrices.

Usage

KITkernel(y, kmatA, kmatB, kmatC = NULL, x = NULL,
AkernelC = 0.0, BkernelC = 0.0, trait = NULL, delta = NULL,
standardize = TRUE, ...)

Arguments

y a vector, matrix, or data.frame of traits. Must be a continuous, dichotomous, or
survival trait. Data must be complete.

kmatA a matrix or data.frame. A kernel matrix. Data must be complete.

kmatB a matrix or data.frame. A kernel matrix. Data must be complete.

kmatC If provided, a matrix or data.frame. The kernel matrix of the effect for which
the user is testing given matA and matB. Data must be complete. If NULL, the
kmatA x kmatB kernel will be used.

x a vector, matrix, or data.frame. The design matrix of covariates that are not
included in either matA or matB, the kernels of which are provided in kmatA
and kmatB. Data must be complete.

AkernelC If kmatC is NULL and kmatA was calculated using a polynomial or interactive
kernel, AkernelC is the value of the constant term. For example if kmatA =
(1+X^T X), AkernelC = 1.0. This input is used to properly account for the
constant terms when generating kmatA x kmatB kernel.

BkernelC If kmatC is NULL and kmatB was calculated using a polynomial or interactive
kernel, BkernelC is the value of the constant term. For example if kmatB =
(1+X^T X), BkernelC = 1.0. This input is used to properly account for the
constant terms when generating kmatA x kmatB kernel.

trait One of ’c’,’d’,’s’,NULL indicating the type of trait given in input y, where ’c’
= continuous, ’d’ = dichotomous, and ’s’ = survival. If NULL, the software
will deduce the trait type using the following logic: If input argument delta is
not NULL, assume survival. If y is an integer with only two unique values,
dichotomous. If y is not an integer or if y is an integer and there are more than
two unique values, continuous. Here, integer does not mean the R class but that
a numeric is equivalent to its integer truncation.

8 KITkernel

delta the status/event indicator in survival analyses. Usually, 0=alive, 1=dead; TRUE/FALSE
(TRUE=death); or 1/2 (2 = death). For continuous or dichotomous traits, delta
must be NULL.

standardize If TRUE, input x will be centered and scaled.

... Optional arguments to be passed to kernel machine methods and/or coxph.

Details

The function SKAT_Null_Model and SKAT of the ’SKAT’ R package are used to obtain p-values
for continuous and dichotomous traits. For survival traits, Surv and coxph of the ’survival’ package
and coxKM of the R package ’coxKM’ are used. The ellipsis in the call to KITkernel can be
used to adjust the default setting of the Kernel Machine methods and coxph. At the time of this
documentation, coxph and coxKM have an overlap in argument names, namely ’weights.’ If weights
are provided by user through the ellipsis, it is assumed that this refers to coxph.

At the time of writing this documentation, the R package ’coxKM’ is not available through the
CRAN repository, but can be obtained from <https://github.com/lin-lab/coxKM>. This package is
only required to be installed if survival traits are analyzed. Only version 0.3 and above of ’coxKM’
can be used with this package.

The algorithm maintains the highest possible proportion of variability in both kernel matrices.

Value

A list is returned.

propA The proportion of variability retained in kmatA.

propB The proportion of variability retained in kmatB.

pValue The p-value as returned by function SKAT or coxKM.

Author(s)

Shannon T. Holloway, Rachel Marceau, Wenbin Lu, Michele M. Sale, Bradford B. Worrall, Stephen
R. Williams, Fang-Chi Hsu, and Jung-Ying Tzeng.

References

Marceau, R., Lu, W., Holloway, S. T., Sale, M. M., Worrall, B. B., Williams, S. R., Hsu, F-C.,
and Tzeng, J-Y. A Fast Multiple-Kernel Method with Applications to Detect Gene-Environment
Interaction. Genetic Epidemiology, 39, 456-468.

Examples

if(requireNamespace("SKAT", quietly=TRUE)) {

matA <- matrix(data = rnorm(100*20), nrow = 100, ncol = 20)
matB <- matrix(data = rnorm(100), nrow = 100, ncol = 1)
y <- rnorm(100)

kmatA <- (1 + tcrossprod(matA,matA))^2
kmatB <- tcrossprod(matB,matB)

nongeno 9

KITkernel(y = y, kmatA = kmatA, kmatB = kmatB, AkernelC = 1.0)

}

nongeno Create a nongeno Object

Description

Creates an object of class nongeno containing a non-genotype design matrix, the type of kernel to
generate, and the weights to be used to create the kernel matrix. This function is used to simplify
the input structure of the call to KITdesign.

Usage

nongeno(mat, kernel = "linear", weights = NULL)

Arguments

mat Design matrix. Missing values must be coded as NA.

kernel Type of kernel. Must be one of ’interactive’, ’linear’, ’quadratic’. For linear
kernel, the constant is taken to be zero; for quadratic kernel, it is one.

weights Weights, if any, to be used in generating kernel. Object can be a vector or matrix.
If vector, weights is converted to a diagonal matrix.

Value

Returns an object of class nongeno containing the design matrix, the weights to be used in generat-
ing the kernel, and the type of kernel to be generated.

Author(s)

Shannon T. Holloway

See Also

geno, KITdesign

Examples

ngdata <- matrix(rnorm(40),ncol=4L)

nongeno(mat = ngdata, kernel = "linear", weights = NULL)

10 nongeno-class

nongeno-class Class "nongeno"

Description

Class contains all information needed to generate a kernel matrix for non-genotype data.

Objects from the Class

Objects can be created by calls of the form new("nongeno", ...).

Slots

mat: Object of class "matrix or NULL"; design matrix.

kernel: Object of class "character"; type of kernel to generate.

weights: Object of class "matrix"; weights to be used when generating kernel matrix.

Methods

No methods defined with class "nongeno" in the signature.

Note

This class is used to simplify input for and logic within the main program. New objects of this class
should be created only through function nongeno().

Author(s)

Shannon T. Holloway

See Also

geno, nongeno

Examples

showClass("nongeno")

Index

∗ classes
geno-class, 4
nongeno-class, 10

FastKM (FastKM-package), 2
FastKM-package, 2

geno, 2, 4, 9, 10
geno-class, 4

KITdesign, 3, 5, 9
KITkernel, 7

nongeno, 3, 4, 9, 10
nongeno-class, 10

11

	FastKM-package
	geno
	geno-class
	KITdesign
	KITkernel
	nongeno
	nongeno-class
	Index

